【摘要】課時(shí)序號(hào):36重點(diǎn):1、理解數(shù)列通項(xiàng)公式的意義,掌握等差、等比數(shù)列的通項(xiàng)公式的求法;2、根據(jù)數(shù)列的遞推公式構(gòu)造等差、等比數(shù)列求數(shù)列的通項(xiàng)公式.3、掌握數(shù)列通項(xiàng)公式的常用方法:公式法、累加法、累乘法、輔助數(shù)列法等等難點(diǎn):1、根據(jù)數(shù)列的遞推公式構(gòu)造等差、等比數(shù)列求數(shù)列的通項(xiàng)公式.2、掌握數(shù)列通項(xiàng)公式的常用方法:公式法、累加法、累乘法、迭代
2025-05-06 18:12
【摘要】數(shù)列通項(xiàng)的求法一、公式法二、迭加法若an+1=an+f(n),則:若an+1=f(n)an,則:三、疊乘法an=S1(n=1),Sn-Sn-1(n≥2).an=a1+?(ak-ak-1)=a1+?f(k-1)=a1+?f(k).n-1k=1
2024-11-19 08:49
【摘要】數(shù)列通項(xiàng)的求法高三備課組求數(shù)列的通項(xiàng)方法1、由等差,等比定義,寫(xiě)出通項(xiàng)公式2、利用迭加an-an-1=f(n)、迭乘an/an-1=f(n)、迭代3、一階遞推,我們通常將其化為
2024-11-17 08:47
【摘要】......數(shù)列通項(xiàng)公式的求法集錦一,累加法形如(n=2、3、4…...)且可求,則用累加法求。有時(shí)若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項(xiàng)公式
2024-08-16 23:50
【摘要】......數(shù)列通項(xiàng)公式的常見(jiàn)求法數(shù)列在高中數(shù)學(xué)中占有非常重要的地位,每年高考都會(huì)出現(xiàn)有關(guān)數(shù)列的方面的試題,一般分為小題和大題兩種題型,而數(shù)列的通項(xiàng)公式的求法是??嫉囊粋€(gè)知識(shí)點(diǎn),一般常出現(xiàn)在大題的第一小問(wèn)中,因此掌握好數(shù)列通項(xiàng)公式的
2025-07-02 05:23
【摘要】數(shù)列通項(xiàng)公式的求法一、近6年全國(guó)卷(2009——2014)求數(shù)列通項(xiàng)公式的試題概覽年份試題特點(diǎn)或已知條件類(lèi)型或方法2009卷1轉(zhuǎn)化,累加法2009卷2,與的關(guān)系,構(gòu)造等差數(shù)列2010卷1,轉(zhuǎn)化,構(gòu)造等比數(shù)列2010新課標(biāo)累加法2011新課標(biāo)是等比數(shù)列,定義法,2012全國(guó)卷,轉(zhuǎn)化,構(gòu)造等比數(shù)列2013
2025-07-02 05:32
【摘要】通項(xiàng)公式和前n項(xiàng)和1、新課講授:求數(shù)列前N項(xiàng)和的方法1.公式法(1)等差數(shù)列前n項(xiàng)和:特別的,當(dāng)前n項(xiàng)的個(gè)數(shù)為奇數(shù)時(shí),,即前n項(xiàng)和為中間項(xiàng)乘以項(xiàng)數(shù)。這個(gè)公式在很多時(shí)候可以簡(jiǎn)化運(yùn)算。(2)等比數(shù)列前n項(xiàng)和:q=1時(shí),,特別要注意對(duì)公比的討論。(3)其他公式較常見(jiàn)公式:1、2、3、[例1
2025-03-31 02:53
【摘要】數(shù)列通項(xiàng)公式、求和的常見(jiàn)題型一、定義法例題1:(1)在數(shù)列{}中,若,,則=等差數(shù)列定義:公差,=n+5(2)在數(shù)列{}中,若,, 則=等比數(shù)列定義:公差,練習(xí)若數(shù)列的遞推公式為,則求這個(gè)數(shù)列的通項(xiàng)公式?! 。ǎ┒?、公式法已知數(shù)列的前項(xiàng)和與的關(guān)系,求數(shù)列的通項(xiàng)可用公式求解.例2.①
2025-07-02 05:29
【摘要】由遞推公式求數(shù)列通項(xiàng)的幾種常見(jiàn)的方法例1:(2020年全國(guó)高考試題文)一:累加法(2020年全國(guó)高考試題)二:累乘法例3:(2020年全國(guó)高考試題北京卷)三:待定系數(shù)法四:倒數(shù)法六:數(shù)學(xué)歸納法(歸納—猜想—證明)例5(2020年春季安徽理)小結(jié)六:數(shù)學(xué)歸納
2024-11-18 02:30
【摘要】,而在考試尤其是高考中數(shù)列題目大多數(shù)又比較難,有的題目很難、很復(fù)雜,顯示出很大的反差。使得在學(xué)習(xí)數(shù)列時(shí)感到很困難。同時(shí),數(shù)列題目種類(lèi)繁多,很難歸類(lèi)。為了便于研究數(shù)列問(wèn)題,找出其中某些常見(jiàn)數(shù)列題目的解題思路、規(guī)律、方法,現(xiàn)把一些常見(jiàn)的數(shù)列通項(xiàng)公式的求法作以下歸類(lèi)。.一、作差求和法m例1在數(shù)列{}中,,,求通項(xiàng)公式.解:原遞推式可化為:則,……,逐項(xiàng)相加
2024-09-05 21:37
【摘要】:——直接利用等差或等比數(shù)列的定義求通項(xiàng)。特征:適應(yīng)于已知數(shù)列類(lèi)型(等差或者等比).例1.等差數(shù)列是遞增數(shù)列,前n項(xiàng)和為,且成等比數(shù)列,.求數(shù)列的通項(xiàng)公式.變式練習(xí):,求的通項(xiàng)公式2.在等比數(shù)列中,,且為和的等差中項(xiàng),求數(shù)列的首項(xiàng)、公比及前項(xiàng)和.求數(shù)列的通項(xiàng)可用公式求解。特征:
2025-06-23 07:01
【摘要】數(shù)列知識(shí)點(diǎn)及方法歸納1.等差數(shù)列的定義與性質(zhì)定義:(為常數(shù)),等差中項(xiàng):成等差數(shù)列前項(xiàng)和性質(zhì):是等差數(shù)列(1)若,則(2)數(shù)列仍為等差數(shù)列,仍為等差數(shù)列,公差為;(3)若三個(gè)成等差數(shù)列,可設(shè)為(4)若是等差數(shù)列,且前項(xiàng)和分別為,則(5)為等差數(shù)列(為常數(shù),是關(guān)于的常數(shù)項(xiàng)為0的二次函數(shù))的最值可求二次函數(shù)的最值;或者求出中的正、負(fù)分界項(xiàng),即:當(dāng),解
2024-08-18 09:35
【摘要】專(zhuān)題:數(shù)列的通項(xiàng)求通項(xiàng)的常見(jiàn)問(wèn)題:1、特殊數(shù)列的通項(xiàng)2、構(gòu)造特殊數(shù)列,間接求通項(xiàng)3、由Sn求an4、由遞推關(guān)系求an已知數(shù)列{an}中,a1=2。(1)求證:數(shù)列是等差數(shù)列。(2)求數(shù)列{an}的通項(xiàng)公式。『回顧』
2024-11-17 13:17
【摘要】數(shù)列前n項(xiàng)和的求法求數(shù)列前n項(xiàng)和是數(shù)列的重要內(nèi)容,也是一個(gè)難點(diǎn)。求等差(等比)數(shù)列的前n項(xiàng)和,主要是應(yīng)用公式。對(duì)于一些既不是等差也不是等比的數(shù)列,就不能直接套用公式,而應(yīng)根據(jù)它們的特點(diǎn),對(duì)其進(jìn)行變形、轉(zhuǎn)化,利用化歸的思想,來(lái)尋找解題途徑。一、拆項(xiàng)轉(zhuǎn)化法例1已知數(shù)列
2024-08-18 07:30
【摘要】高二數(shù)學(xué)導(dǎo)學(xué)案GRSX5-33常見(jiàn)遞推數(shù)列通項(xiàng)公式的求法高二數(shù)學(xué)備課組編一、學(xué)習(xí)目標(biāo):1.運(yùn)用累加、累乘、待定系數(shù)等方法求數(shù)列的通項(xiàng)公式。2.培養(yǎng)學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣;二、重點(diǎn)
2025-04-23 00:58