【摘要】誤差理論與數(shù)據(jù)處理第8章最小二乘法華中科技大學(xué)機(jī)械學(xué)院20222內(nèi)容提要8最小二乘法1最小二乘法原理2最小二乘法的基本運(yùn)算3最小二乘法處理的精度估計(jì)3最小二乘法發(fā)展歷程1750年:拉普拉斯、歐拉、辛普生在天文間接測(cè)量數(shù)據(jù)處理問(wèn)題上提出了許多方法,其中有最小二乘法
2025-02-23 19:16
【摘要】最小二乘法綜述及算例一最小二乘法的歷史簡(jiǎn)介1801年,意大利天文學(xué)家朱賽普·皮亞齊發(fā)現(xiàn)了第一顆小行星谷神星。經(jīng)過(guò)40天的跟蹤觀測(cè)后,由于谷神星運(yùn)行至太陽(yáng)背后,使得皮亞齊失去了谷神星的位置。隨后全世界的科學(xué)家利用皮亞齊的觀測(cè)數(shù)據(jù)開(kāi)始尋找谷神星,但是根據(jù)大多數(shù)人計(jì)算的結(jié)果來(lái)尋找谷神星都沒(méi)有結(jié)果。時(shí)年24歲的高斯也計(jì)算了谷神星的軌道。奧地利天文學(xué)家海因里?!W爾伯斯根據(jù)高斯
2025-07-01 02:50
【摘要】最小二乘法在曲線擬合中比較普遍。擬合的模型主要有......一般對(duì)于LS問(wèn)題,通常利用反斜杠運(yùn)算“\”、fminsearch或優(yōu)化工具箱提供的極小化函數(shù)求解。在Matlab中,曲線擬合工具箱也提供了曲線擬合的圖形界面操作。在命令提示符后鍵入:cftool,即可根據(jù)數(shù)據(jù),選擇適當(dāng)?shù)臄M合模型。“\”命令:y=a+b*x+c*x^:X=[ones(siz
2024-08-08 02:21
【摘要】實(shí)驗(yàn)三函數(shù)逼近一、實(shí)驗(yàn)?zāi)繕?biāo)1.掌握數(shù)據(jù)多項(xiàng)式擬合的最小二乘法。2.會(huì)求函數(shù)的插值三角多項(xiàng)式。二、實(shí)驗(yàn)問(wèn)題(1)由實(shí)驗(yàn)得到下列數(shù)據(jù)試對(duì)這組數(shù)據(jù)進(jìn)行曲線擬合。(2)求函數(shù)在區(qū)間上的插值三角多項(xiàng)式。三、實(shí)驗(yàn)要求1.利用最小二乘法求問(wèn)題(1)所給數(shù)據(jù)的3次、4次擬合多項(xiàng)式,畫(huà)出擬合曲線。2
2025-07-02 20:56
【摘要】普通最小二乘法(OLS)(OrdinaryLeastSquares)1777-1855高斯被認(rèn)為是歷史上最重要的數(shù)學(xué)家之一,并享有“數(shù)學(xué)王子”之稱(chēng)。高斯和阿基米德、牛頓并列為世界三大數(shù)學(xué)家。一生成就極為豐碩,以他名字“高斯”命名的成果達(dá)110個(gè),屬數(shù)學(xué)家中之最。1.OLS的基本思想普通最小二乘法(O
2025-05-06 18:43
【摘要】第二章小樣本最小二乘法
2025-05-04 23:41
【摘要】一、最小二乘法二、小結(jié)第七節(jié)最小二乘法在工程問(wèn)題中,常常需要根據(jù)兩個(gè)變量的幾組實(shí)驗(yàn)數(shù)值——實(shí)驗(yàn)數(shù)據(jù),來(lái)找出這兩個(gè)變量的函數(shù)關(guān)系的近似表達(dá)式.通常把這樣得到的函數(shù)的近似表達(dá)式叫做經(jīng)驗(yàn)公式.一、最小二乘法(leastsquaremethod)問(wèn)題:如何得到經(jīng)驗(yàn)公式,常用的方法是什么?為了弄清某企業(yè)利潤(rùn)和產(chǎn)值
2024-09-07 12:39
【摘要】《人工智能》課程論文論文題目:偏最小二乘算法(PLS)回歸建模學(xué)生姓名:張帥帥學(xué)號(hào):172341392專(zhuān)業(yè):機(jī)械制造及其自動(dòng)化所在學(xué)院:機(jī)械工程學(xué)院年
2025-04-22 22:10
【摘要】第6章?曲線擬合的最小二乘法?擬合曲線 通過(guò)觀察或測(cè)量得到一組離散數(shù)據(jù)序列,當(dāng)所得數(shù)據(jù)比較準(zhǔn)確時(shí),可構(gòu)造插值函數(shù)逼近客觀存在的函數(shù),構(gòu)造的原則是要求插值函數(shù)通過(guò)這些數(shù)據(jù)點(diǎn),即。此時(shí),序列與是相等的。 如果數(shù)據(jù)序列,含有不可避免的誤差(或稱(chēng)“噪音”),;如果數(shù)據(jù)序列無(wú)法同時(shí)滿足某特定函數(shù),,那么,只能要求所做逼近函數(shù)最優(yōu)地靠近樣點(diǎn),即向量與的誤差或距離最小。
2025-07-01 15:53
【摘要】第三章曲線擬合的最小二乘法需要從一組給定的數(shù)據(jù)(,)iixy中,尋找自變量X與變量y之間的關(guān)系()yfx?例:60年代世界人口增長(zhǎng)情況如下:年19601961196319641965196619671968人口
2025-05-17 21:14
【摘要】假設(shè)檢驗(yàn)的基本思想?基于小概率原理的反證法二、假設(shè)檢驗(yàn)的步驟1、提出假設(shè),包括原假設(shè)和備擇假設(shè)2、構(gòu)造相應(yīng)的檢驗(yàn)統(tǒng)計(jì)量,確定其分布形式;根據(jù)樣本數(shù)據(jù)計(jì)算統(tǒng)計(jì)量的值;3、確定顯著性水平?和臨界值;4、作出結(jié)論。(根據(jù)所計(jì)算的統(tǒng)計(jì)量的值與臨界值比較確定是否拒絕原假設(shè))原假設(shè)
2025-05-20 22:38
【摘要】1分段插值法§從上節(jié)可知,如果插值多項(xiàng)式的次數(shù)過(guò)高,可能產(chǎn)生Runge現(xiàn)象,因此,在構(gòu)造插值多項(xiàng)式時(shí)常采用分段插值的方法。一、分段線性Lagrange插值,ix設(shè)插值節(jié)點(diǎn)為niyi,,1,0,??函數(shù)值為],[,,11??kkkkxxxx形成一個(gè)插值區(qū)間任取兩個(gè)相鄰的節(jié)點(diǎn)構(gòu)造Lagrange線性插值
2025-05-05 07:50
【摘要】第三章函數(shù)逼近1賦范空間2內(nèi)積空間3正交多項(xiàng)式的性質(zhì)4常用正交多項(xiàng)式5最佳平方逼近問(wèn)題6曲線擬合的最小二乘法2021年6月14日星期一26曲線擬合的最小二乘法?背景:?離散數(shù)據(jù)的特點(diǎn)?數(shù)據(jù)不準(zhǔn)確?數(shù)據(jù)多,甚至是是大量的?數(shù)據(jù)采樣一般基本上反映函數(shù)的基本性態(tài)
【摘要】第5次最佳平方逼近不曲線擬合的最小二乘法計(jì)算方法(NumericalAnalysis)主要內(nèi)容?最佳平方逼近?曲線擬合的最小二乘法最佳平方逼近函數(shù)逼近的類(lèi)型?最佳一致逼近:使用多項(xiàng)式對(duì)連續(xù)函數(shù)進(jìn)行一致逼近。逼近誤差使用范數(shù)|(x)s-f(x)|max||(x)s-f(x)||
2024-08-18 16:35
【摘要】學(xué)校代碼:10128學(xué)號(hào):本科畢業(yè)論文(題目:最小二乘法的原理及在建模中的應(yīng)用分析學(xué)生姓名:學(xué)院:系別:專(zhuān)業(yè):班級(jí):指導(dǎo)教師:副教授二〇一〇年六月內(nèi)蒙古工業(yè)大學(xué)本
2025-07-05 03:36