freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

大連備戰(zhàn)中考數(shù)學(xué)專題復(fù)習(xí)分類練習(xí)-二次函數(shù)綜合解答題-文庫(kù)吧資料

2025-04-01 00:19本頁(yè)面
  

【正文】 ∵t≠2,∴不存在;(3)①在圖2中,過(guò)點(diǎn)P作PF∥y軸,交BC于點(diǎn)F.設(shè)直線BC的解析式為y=mx+n(m≠0),將B(3,0)、C(0,3)代入y=mx+n,得,解得:,∴直線BC的解析式為y=﹣x+3,∵點(diǎn)P的坐標(biāo)為(t,﹣t2+2t+3),∴點(diǎn)F的坐標(biāo)為(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=PF?OB=﹣t2+t=﹣(t﹣)2+;②∵﹣<0,∴當(dāng)t=時(shí),S取最大值,最大值為.∵點(diǎn)B的坐標(biāo)為(3,0),點(diǎn)C的坐標(biāo)為(0,3),∴線段BC=,∴P點(diǎn)到直線BC的距離的最大值為,此時(shí)點(diǎn)P的坐標(biāo)為(,).【點(diǎn)睛】本題考查了待定系數(shù)法求一次(二次)函數(shù)解析式、平行四邊形的判定與性質(zhì)、三角形的面積、一次(二次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)由點(diǎn)的坐標(biāo),利用待定系數(shù)法求出拋物線表達(dá)式;(2)分t=2和t≠2兩種情況考慮;(3)①利用三角形的面積公式找出S關(guān)于t的函數(shù)表達(dá)式;②利用二次函數(shù)的性質(zhì)結(jié)合面積法求出P點(diǎn)到直線BC的距離的最大值.14.(12分)如圖所示是隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12 m,寬是4 m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)C到OB的水平距離為3 m,到地面OA的距離為m. (1)求拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;(2)一輛貨運(yùn)汽車載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過(guò)?(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?【答案】(1)拋物線的函數(shù)關(guān)系式為y=x2+2x+4,拱頂D到地面OA的距離為10 m;(2)兩排燈的水平距離最小是4 m.【解析】【詳解】試題分析:根據(jù)點(diǎn)B和點(diǎn)C在函數(shù)圖象上,利用待定系數(shù)法求出b和c的值,從而得出函數(shù)解析式,根據(jù)解析式求出頂點(diǎn)坐標(biāo),得出最大值;根據(jù)題意得出車最外側(cè)與地面OA的交點(diǎn)為(2,0)(或(10,0)),然后求出當(dāng)x=2或x=10時(shí)y的值,與6進(jìn)行比較大小,比6大就可以通過(guò),比6小就不能通過(guò);將y=8代入函數(shù),得出x的值,然后進(jìn)行做差得出最小值.試題解析:(1)由題知點(diǎn)在拋物線上所以,解得,所以所以,當(dāng)時(shí),答:,拱頂D到地面OA的距離為10米(2)由題知車最外側(cè)與地面OA的交點(diǎn)為(2,0)(或(10,0))當(dāng)x=2或x=10時(shí),所以可以通過(guò)(3)令,即,可得,解得答:兩排燈的水平距離最小是考點(diǎn):二次函數(shù)的實(shí)際應(yīng)用.15.已知:二次函數(shù)(a為常數(shù)).(1)請(qǐng)寫(xiě)出該二次函數(shù)圖象的三條性質(zhì);(2)在同一直角坐標(biāo)系中,若該二次函數(shù)的圖象在的部分與一次函數(shù)的圖象有兩個(gè)交點(diǎn),求的取值范圍.【答案】(1)見(jiàn)解析;(2).【解析】【分析】(1)可從開(kāi)口方向、對(duì)稱軸、最值等角度來(lái)研究即可;(2) 先由二次函數(shù)的圖象與一次函數(shù)的圖象有兩個(gè)交點(diǎn),即關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,由此可得,再根據(jù)二次函數(shù)的圖象在的部分與一次函數(shù)的圖象有兩個(gè)交點(diǎn),也就是說(shuō)二次函數(shù)的圖象與軸的部分有兩個(gè)交點(diǎn),畫(huà)出函數(shù)的圖象,結(jié)合圖象,可知當(dāng)時(shí),將x=4代入求得a的取值范圍,由此即可求得答案.【詳解】(1)①圖象開(kāi)口向上;②圖象的對(duì)稱軸為直線;③當(dāng)時(shí),隨的增大而增大;④當(dāng)時(shí),隨的增大而減小;⑤當(dāng)時(shí),函數(shù)有最小值;(2)∵二次函數(shù)的圖象與一次函數(shù)的圖象有兩個(gè)交點(diǎn),∴,即,解得,∵二次函數(shù)的圖象在的部分與一次函數(shù)的圖象有兩個(gè)交點(diǎn),∴二次函數(shù)的圖象與軸的部分有兩個(gè)交點(diǎn),畫(huà)出二次函數(shù)的圖象,結(jié)合圖象,可知當(dāng)時(shí),∴當(dāng)時(shí),得,∴當(dāng)二次函數(shù)的圖象在的部分與一次函數(shù)的圖象有兩個(gè)交點(diǎn)時(shí),的取值范圍為.【點(diǎn)睛】本題考查的是二次函數(shù)綜合題,涉及了二次函數(shù)的性質(zhì),二次函數(shù)圖象與一次函數(shù)圖象的交點(diǎn)問(wèn)題,二次函數(shù)的圖象與x軸交點(diǎn)問(wèn)題,正確進(jìn)行分析并運(yùn)用數(shù)形結(jié)合思想、靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.。=t,∴點(diǎn)M的坐標(biāo)為(t﹣2, t).又∵點(diǎn)M在拋物線y=x2﹣x上,∴ t=(t﹣2)2﹣(t﹣2),解得:t=;當(dāng)點(diǎn)M在線段QP的延長(zhǎng)線上時(shí),同理可得出點(diǎn)M的坐標(biāo)為(t﹣6,2t),∵點(diǎn)M在拋物線y=x2﹣x上,∴2t=(t﹣6)2﹣(t﹣6),解得:t=.綜上所述:當(dāng)運(yùn)動(dòng)時(shí)間秒 或 時(shí),QM=2PM. 【點(diǎn)睛】本題考查二次函數(shù)綜合運(yùn)用,綜合能力是解題關(guān)鍵.10.綜合與探究如圖,拋物線經(jīng)過(guò)點(diǎn)A(2,0),B(4,0)兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)D是拋物線上一個(gè)動(dòng)點(diǎn),BC,DB,DC.(1)求拋物線的函數(shù)表達(dá)式;(2)△BCD的面積等于△AOC的面積的時(shí),求的值;(3)在(2)的條件下,若點(diǎn)M是軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)N是拋物線上一動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】(1);(2)3;(3).【解析】【分析】(1)利用待定系數(shù)法進(jìn)行求解即可;(2)作直線DE⊥軸于點(diǎn)E,交BC于點(diǎn)G,作CF⊥DE,垂足為F,先求出S△OAC=6,再根據(jù)S△BCD=S△AOC,得到S△BCD =,然后求出BC的解析式為,則可得點(diǎn)G的坐標(biāo)為,由此可得,再根據(jù)S△BCD=S△CDG+S△BDG=,可得關(guān)于m的方程,解方程即可求得答案;(3)存在,如下圖所示,以BD為邊或者以BD為對(duì)角線進(jìn)行平行四邊形的構(gòu)圖,以BD為邊時(shí),有3種情況,由點(diǎn)D的坐標(biāo)可得點(diǎn)N點(diǎn)縱坐標(biāo)為177。熟練運(yùn)用頂點(diǎn)坐標(biāo)(,)7.如圖,已知二次函數(shù)的圖象過(guò)點(diǎn)O(0,0).A(8,4),與x軸交于另一點(diǎn)B,且對(duì)稱軸是直線x=3.(1)求該二次函數(shù)的解析式;(2)若M是OB上的一點(diǎn),作MN∥AB交OA于N,當(dāng)△ANM面積最大時(shí),求M的坐標(biāo);(3)P是x軸上的點(diǎn),過(guò)P作PQ⊥x軸與拋物線交于Q.過(guò)A作AC⊥x軸于C,當(dāng)以O(shè),P,Q為頂點(diǎn)的三角形與以O(shè),A,C為頂點(diǎn)的三角形相似時(shí),求P點(diǎn)的坐標(biāo).【答案】(1);(2)當(dāng)t=3時(shí),S△AMN有最大值3,此時(shí)M點(diǎn)坐標(biāo)為(3,0);(3)P點(diǎn)坐標(biāo)為(14,0)或(﹣2,0)或(4,0)或(8,0).【解析】【分析】(1)先利用拋物線的對(duì)稱性確定B(6,0),然后設(shè)交點(diǎn)式求拋物線解析式;(2)設(shè)M(t,0),先其求出直線OA的解析式為直線AB的解析式為y=2x12,直線MN的解析式為y=2x2t,再通過(guò)解方程組得N(),接著利用三角形面積公式,利用S△AMN=S△AOMS△NOM得到然后根據(jù)二次函數(shù)的性質(zhì)解決問(wèn)題;(3)設(shè)Q,根據(jù)相似三角形的判定方法,當(dāng)時(shí),△PQO∽△COA,則;當(dāng)時(shí),△PQO∽△CAO,則,然后分別解關(guān)于m的絕對(duì)值方程可得到對(duì)應(yīng)的P點(diǎn)坐標(biāo).【詳解】解:(1)∵拋物線過(guò)原點(diǎn),對(duì)稱軸是直線x=3,∴B點(diǎn)坐標(biāo)為(6,0),設(shè)拋物線解析式為y=ax(x﹣6),把A(8,4)代入得a?8?2=4,解得a=,∴拋物線解析式為y=x(x﹣6),即y=x2﹣x;(2)設(shè)M(t,0),易得直線OA的解析式為y=x,設(shè)直線AB的解析式為y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直線AB的解析式為y=2x﹣12,∵M(jìn)N∥AB,∴設(shè)直線MN的解析式為y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直線MN的解析式為y=2x﹣2t,解方程組得,則,∴S△AMN=S△AOM﹣S△NOM ,當(dāng)t=3時(shí),S△AMN有最大值3,此時(shí)M點(diǎn)坐標(biāo)為(3,0);(3)設(shè),∵∠OPQ=∠ACO,∴當(dāng)時(shí),△PQO∽△COA,即,∴PQ=2PO,即,解方程得m1=0(舍去),m2=14,此時(shí)P點(diǎn)坐標(biāo)為(14,0);解方程得m1=0(舍去),m2=﹣2,此時(shí)P點(diǎn)坐標(biāo)為(﹣2,0);∴當(dāng)時(shí),△PQO∽△CAO,即,∴PQ
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1