freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)一模試題分類匯編——平行四邊形綜合含答案解析-文庫吧資料

2025-03-30 22:25本頁面
  

【正文】 中點(diǎn)E出發(fā),速度為每秒2個單位長度,∴AB=2BE,由圖象得:t=2時,BE=22=4,∴AB=2BE=8,AE=BE=4,t=11時,2t=22,∴BC=224=18,當(dāng)t=0時,點(diǎn)P在E處,m=△AEQ的面積=AQAE=104=20;故答案為8,18,20;(2)當(dāng)t=1秒時,以PQ為直徑的圓不與BC邊相切,理由如下: 當(dāng)t=1時,PE=2,∴AP=AE+PE=4+2=6,∵四邊形ABCD是矩形,∴∠A=90176。C=CDDA39。中,DQ=ADAQ=8,由勾股定理求出DA39。P=AP,A39。P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t4,得出2t4=6,解方程即可;③當(dāng)點(diǎn)P在BC邊上,A39。落在BC邊上時,由折疊的性質(zhì)得:A39。BP中,BP=42t,PA39。B=BFA39。由勾股定理求出A39。Q=AQ=10,∠PA39。落在BC邊上時,作QF⊥BC于F,則QF=AB=8,BF=AQ=10,由折疊的性質(zhì)得:PA39。M=5<圓O39。M=AP=3,求出O39。交AD于M,則MN=AB=8,O39。作O39。.【點(diǎn)睛】本題主要考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、銳角三角函數(shù)、旋轉(zhuǎn)變換的性質(zhì)的綜合運(yùn)用,有一定的綜合性,分類討論當(dāng)△AON是等腰三角形時,求α的度數(shù)是本題的難點(diǎn).7.如圖①,在矩形中,點(diǎn)從邊的中點(diǎn)出發(fā),沿著速運(yùn)動,速度為每秒2個單位長度,到達(dá)點(diǎn)后停止運(yùn)動,點(diǎn)是上的點(diǎn),設(shè)的面積為,點(diǎn)運(yùn)動的時間為秒,與的函數(shù)關(guān)系如圖②所示.(1)圖①中= ,= ,圖②中= .(2)當(dāng)=1秒時,試判斷以為直徑的圓是否與邊相切?請說明理由:(3)點(diǎn)在運(yùn)動過程中,將矩形沿所在直線折疊,則為何值時,折疊后頂點(diǎn)的對應(yīng)點(diǎn)落在矩形的一邊上.【答案】(1)8,18,20?;?35176?;?5176。=+90=176。=135176?!唳?90176。;Ⅱ、當(dāng)AN=ON時,∴∠NAO=∠AON=45176?!唳?∠ANO+90176?!唷螦NO=∠AON=176。=45176?!唳?90176。;Ⅱ、當(dāng)AN=ON時,∴∠NAO=∠AON=45176?!摺螦DO=45176?!郃G′⊥DE′;(3)①正方形OE′F′G′的邊OG′與正方形ABCD的邊AD相交于點(diǎn)N,如圖3,Ⅰ、當(dāng)AN=AO時,∵∠OAN=45176?!咚倪呅蜲EFG是正方形,∴OG′=OE′,∠E′OG′=90176。由四邊形OEFG是正方形,得到OG′=OE′,∠E′OG′=90176。176。176。),若△AON是等腰三角形,請直接寫出α的值.【答案】(1)證明見解析;(2)證明見解析;(3)176。中,==,∴t=7,∴S=15(15﹣7)=120.【點(diǎn)睛】本題考查一次函數(shù)圖象及性質(zhì),正方形的性質(zhì);掌握待定系數(shù)法求函數(shù)解析式,利用三角形的正切值求邊的關(guān)系,利用勾股定理在直角三角形中建立邊之間的聯(lián)系,準(zhǔn)確確定陰影部分的面積是解題的關(guān)鍵.5.(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點(diǎn)E在邊AD上,點(diǎn)G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)【答案】見解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;應(yīng)用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.∵∠A=∠F,∴∠BCD=∠ECG.∴∠BCD∠ECD=∠ECG∠ECD,即∠BCE=∠DCG.在△BCE和△DCG中, ∴△BCE≌△DCG(SAS),∴BE=DG.應(yīng)用:∵四邊形ABCD為菱形,∴AD∥BC,∵BE=DG,∴S△ABE+S△CDE=S△BEC=S△CDG=8,∵AE=3ED,∴S△CDE= ,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.6.如圖,點(diǎn)O是正方形ABCD兩條對角線的交點(diǎn),分別延長CO到點(diǎn)G,OC到點(diǎn)E,使OG=2OD、OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG.(1)如圖1,若正方形OEFG的對角線交點(diǎn)為M,求證:四邊形CDME是平行四邊形.(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時針旋轉(zhuǎn),得到正方形OE′F′G′,如圖2,連接AG′,DE′,求證:AG′=DE′,AG′⊥DE′;(3)在(2)的條件下,正方形OE′F′G′的邊OG′與正方形ABCD的邊相交于點(diǎn)N,如圖3,設(shè)旋轉(zhuǎn)角為α(0176。PK中,∴PK=t﹣3,F(xiàn)39。的距離是t,∵PF=3,∴PF39。中,∴,∴t=4,∴EM=3,MH39。=15﹣F39。N=3t,∵M(jìn)H39。的距離是t,在Rt△F39。K=3t9,在Rt△PKG39。中,t=4,S=(12+)11=;當(dāng)點(diǎn)G運(yùn)動到直線DE上時,在Rt△F39。=15F39。的距離是t,F(xiàn)垂直x軸方向移動的距離是t,當(dāng)點(diǎn)H運(yùn)動到直線DE上時,在Rt△F39?!郋C2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【點(diǎn)睛】考查四邊形綜合題、矩形的性質(zhì)、正方形的性質(zhì)、菱形的判定和性質(zhì),等邊三角形的判定和性質(zhì),勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形,學(xué)會轉(zhuǎn)化的思想思考問題.4.如圖,在平面直角坐標(biāo)系中,直線DE交x軸于點(diǎn)E(30,0),交y軸于點(diǎn)D(0,40),直線AB:y=x+5交x軸于點(diǎn)A,交y軸于點(diǎn)B,交直線DE于點(diǎn)P,過點(diǎn)E作EF⊥x軸交直線AB于點(diǎn)F,以EF為一邊向右作正方形EFGH.(1)求邊EF的長;(2)將正方形EFGH沿射線FB的方向以每秒個單位的速度勻速平移,得到正方形E1F1G1H1,在平移過程中邊F1G1始終與y軸垂直,設(shè)平移的時間為t秒(t>0).①當(dāng)點(diǎn)F1移動到點(diǎn)B時,求t的值;②當(dāng)G1,H1兩點(diǎn)中有一點(diǎn)移動到直線DE上時,請直接寫出此時正方形E1F1G1H1與△APE重疊部分的面積.【答案】(1)EF=15;(2)①10;②120;【解析】【分析】(1)根據(jù)已知點(diǎn)E(30,0),點(diǎn)D(0,40),求出直線DE的直線解析式y(tǒng)=x+40,可求出P點(diǎn)坐標(biāo),進(jìn)而求出F點(diǎn)坐標(biāo)即可;(2)①易求B(0,5),當(dāng)點(diǎn)F1移動到點(diǎn)B時,t=10247。=∠EDG,在△DEM和△DEG中, ,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45176。∴∠ADF+∠EDC=45176?!郃FED四點(diǎn)共圓,∴∠EDF=∠DAE=45176?!郔H=FH.(3)結(jié)論:EG2=AG2+CE2.理由:如圖3中,將△ADG繞點(diǎn)D逆時針旋轉(zhuǎn)90176?!螴FH=60176?!唷螶IF=60176。在△BIF和△MJI中,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120176?!郋B=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中, ,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60176?!唷螮BF=60176?!螦BD=60176。得到△DCM,先證明△DEG≌△DEM,再證明△ECM是直角三角形即可解決問題.【詳解】(1)①證明:如圖1中,∵四邊形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中, ,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四邊形EBFD是平行四邊形,∵EF⊥BD,OB=OD,∴EB=ED,∴四邊形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵E
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1