freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學-平行四邊形綜合試題及答案-文庫吧資料

2025-03-31 22:12本頁面
  

【正文】 求出這個不變的值,若變化,試說明理由;(2)當點E落在線段DC的延長線上時,在備用圖上畫出符合要求的大致圖形,并判斷上述(1)中的結論是否仍然成立(只需寫出結論,不需要證明);(3)在點P的運動過程中,△PEC能否為等腰三角形?如果能,試求出AP的長,如果不能,試說明理由.【答案】(1)①證明見解析;②點PP在運動過程中,PF的長度不變,值為;(2)畫圖見解析,成立 ;(3)能,1.【解析】分析:(1)①過點P作PG⊥BC于G,過點P作PH⊥DC于H,如圖1.要證PB=PE,只需證到△PGB≌△PHE即可;②連接BD,如圖2.易證△BOP≌△PFE,則有BO=PF,只需求出BO的長即可.(2)根據(jù)條件即可畫出符合要求的圖形,同理可得(1)中的結論仍然成立.(3)可分點E在線段DC上和點E在線段DC的延長線上兩種情況討論,通過計算就可求出符合要求的AP的長.詳解:(1)①證明:過點P作PG⊥BC于G,過點P作PH⊥DC于H,如圖1.∵四邊形ABCD是正方形,PG⊥BC,PH⊥DC,∴∠GPC=∠ACB=∠ACD=∠HPC=45176。PC中,BP=2t4,CP=BCBP=18(2t4)=222t,由勾股定理得:AP2=82+(2t4)2,A39。C=CDDA39。中,DQ=ADAQ=8,由勾股定理得:DA39。P=AP,A39。落在CD邊上時,連接AP、A39。PQ,∴∠APQ=∠AQP,∴AP=AQ=A39。=∠A39。如圖3所示:由折疊的性質(zhì)得:A39。=AP=8(42t)=4+2t,由勾股定理得:42+(42t)2=(4+2t)2,解得:t=;②當點P在BC邊上,A39。F=4,在Rt△A39。F==6,∴A39。Q=∠A=90176。=PA,A39。落在BC邊上時,作QF⊥BC于F,如圖2所示:則QF=AB=8,BF=AQ=10,∵四邊形ABCD是矩形,∴∠A=∠B=∠BCD=∠D=90176。N=MNO39。M是△APQ的中位線,∴O39。為PQ的中點, ∴O39。交AD于M,如圖1所示:則MN=AB=8,O39。作O39。PC中,BP=2t4,CP=BCBP=222t,由勾股定理得出方程,解方程即可.【詳解】(1)∵點P從AB邊的中點E出發(fā),速度為每秒2個單位長度,∴AB=2BE,由圖象得:t=2時,BE=22=4,∴AB=2BE=8,AE=BE=4,t=11時,2t=22,∴BC=224=18,當t=0時,點P在E處,m=△AEQ的面積=AQAE=104=20;故答案為8,18,20;(2)當t=1秒時,以PQ為直徑的圓不與BC邊相切,理由如下: 當t=1時,PE=2,∴AP=AE+PE=4+2=6,∵四邊形ABCD是矩形,∴∠A=90176。C=CDDA39。中,DQ=ADAQ=8,由勾股定理求出DA39。P=AP,A39。P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t4,得出2t4=6,解方程即可;③當點P在BC邊上,A39。落在BC邊上時,由折疊的性質(zhì)得:A39。BP中,BP=42t,PA39。B=BFA39。由勾股定理求出A39。Q=AQ=10,∠PA39。落在BC邊上時,作QF⊥BC于F,則QF=AB=8,BF=AQ=10,由折疊的性質(zhì)得:PA39。M=5<圓O39。M=AP=3,求出O39。交AD于M,則MN=AB=8,O39。作O39。∴.∴.∴.∴.(2)證明:∵,∴.∵,∴.∵,平分,∴.∵平分,∴.∵,∴.∴.(3).證明:過點作于點,如圖,∵正方形中,∴.∵平分,∴.∵,∴.∴.∵,∴.【點睛】本題考查正方形的性質(zhì)、勾股定理、角平分線的性質(zhì)、三角函數(shù),題目難度較大,解題的關鍵是熟練掌握正方形的性質(zhì)、勾股定理、角平分線的性質(zhì)、三角函數(shù).8.如圖所示,矩形ABCD中,點E在CB的延長線上,使CE=AC,連接AE,點F是AE的中點,連接BF、DF,求證:BF⊥DF.【答案】見解析.【解析】【分析】延長BF,交DA的延長線于點M,連接BD,進而求證△AFM≌△EFB,得AM=BE,F(xiàn)B=FM,即可求得BC+BE=AD+AM,進而求得BD=BM,根據(jù)等腰三角形三線合一的性質(zhì)即可求證BF⊥DF.【詳解】延長BF,交DA的延長線于點M,連接BD.∵四邊形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,F(xiàn)B=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE= BD =DM.∵FB=FM,∴BF⊥DF.【點睛】本題考查了矩形的性質(zhì),全等三角形的判定和對應邊相等的性質(zhì),等腰三角形三線合一的性質(zhì),本題中求證DB=DM是解題的關鍵.9.如圖①,在矩形中,點從邊的中點出發(fā),沿著速運動,速度為每秒2個單位長度,到達點后停止運動,點是上的點,設的面積為,點運動的時間為秒,與的函數(shù)關系如圖②所示.(1)圖①中= ,= ,圖②中= .(2)當=1秒時,試判斷以為直徑的圓是否與邊相切?請說明理由:(3)點在運動過程中,將矩形沿所在直線折疊,則為何值時,折疊后頂點的對應點落在矩形的一邊上.【答案】(1)8,18,20。由勾股定理得,AF2=FB′2+AB′2,∴AF=5,BF=3,過點B′作B′M⊥AB,B′N⊥AD,由三角形的面積法則可求得B′M=,再由勾股定理可求得B′N=,∴AN=B′M=,∴DN=ADAN==,在Rt△CB′N中,由勾股定理得,B′D= = ;如圖2,當∠AFB′=90176。時,此時A、B′、E三點共線,∵∠B=90176。時,此時A、B′、E三點共線,過點B′作B′M⊥AB,B′N⊥AD,由三角形的面積法則可求
點擊復制文檔內(nèi)容
試題試卷相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1