freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)-平行四邊形-培優(yōu)練習(xí)(含答案)含答案-文庫吧資料

2025-03-31 23:07本頁面
  

【正文】 同理可證△MFG≌△BEF.∴GM=BF=AE=2.∴FC=BC-BF=10.∴.(2)過點G作GM⊥BC交BC的延長線于M,連接HF.∵AD∥BC,∴∠AHF=∠MFH.∵EH∥FG,∴∠EHF=∠GFH.∴∠AHE=∠MFG.又∵∠A=∠GMF=90176。.∵∠AEH+∠AHE=90176。=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.點睛:本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識;本題綜合性強,有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.11.已知:在矩形ABCD中,AB=10,BC=12,四邊形EFGH的三個頂點E、F、H分別在矩形ABCD邊AB、BC、DA上,AE=2.(1)如圖①,當四邊形EFGH為正方形時,求△GFC的面積;(2)如圖②,當四邊形EFGH為菱形,且BF=a時,求△GFC的面積(用a表示);(3)在(2)的條件下,△GFC的面積能否等于2?請說明理由.【答案】(1)10;(2)12-a;(3)不能【解析】解:(1)過點G作GM⊥BC于M.在正方形EFGH中,∠HEF=90176?!螹AN=45176。﹣∠ABC),∵AM=MN∴∠MAN=(180176。+∠CAN=∠BAN+∠ANC=180176。+∠CAN=180176?!唷螧AM=∠CAN,在△ABM與△ACN中, ,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60176?!螹AN=45176?!鰾DF是直角三角形,根據(jù)勾股定理即可作出判斷.試題解析:(1)理由是:如圖1,∵AB=AD,∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,如圖1,∵∠ADC=∠B=90°,∴∠FDG=180°,點F. D. G共線,則∠DAG=∠BAE,AE=AG,∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°?45°=45°=∠EAF,即∠EAF=∠FAG,在△EAF和△GAF中,AF=AF,∠EAF=∠GAF,AE=AG,∴△AFG≌△AFE(SAS),∴EF=FG=BE+DF;(2)∠B+∠D=180°時,EF=BE+DF;∵AB=AD,∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,如圖2,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC+∠B=180°,∴∠FDG=180°,點F. D. G共線,在△AFE和△AFG中,AE=AG,∠FAE=∠FAG,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF,故答案為:∠B+∠ADC=180°;(3)BD2+CE2=DE2.理由是:把△ACE旋轉(zhuǎn)到ABF的位置,連接DF,則∠FAB=∠CAE.∵∠BAC=90°,∠DAE=45°,∴∠BAD+∠CAE=45°,又∵∠FAB=∠CAE,∴∠FAD=∠DAE=45°,則在△ADF和△ADE中,AD=AD,∠FAD=∠DAE,AF=AE,∴△ADF≌△ADE,∴DF=DE,∠C=∠ABF=45°,∴∠BDF=90°,∴△BDF是直角三角形,∴BD2+BF2=DF2,∴BD2+CE2=DE2.9.如圖,拋物線交x軸的正半軸于點A,點B(,a)在拋物線上,點C是拋物線對稱軸上的一點,連接AB、BC,以AB、BC為鄰邊作□ABCD,記點C縱坐標為n, (1)求a的值及點A的坐標; (2)當點D恰好落在拋物線上時,求n的值; (3)記CD與拋物線的交點為E,連接AE,BE,當△AEB的面積為7時,n=___________.(直接寫出答案)【答案】(1), A(3,0);(2)【解析】試題解析:(1)把點B的坐標代入拋物線的解析式中,即可求出a的值,令y=0即可求出點A的坐標.(2)求出點D的坐標即可求解;(3)運用△AEB的面積為7,列式計算即可得解.試題解析:(1)當時,由 ,得(舍去),(1分)∴A(3,0) (2)過D作DG⊥軸于G,BH⊥軸于H.∵CD∥AB,CD=AB∴,∴, ∴ (3) 10.(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為  ?。唬?)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.【答案】(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】分析:(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60176。至△ADG,可使AB與AD重合,證出△AFG≌△AFE,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(2)把△ABE繞點A逆時針旋轉(zhuǎn)90176。猜想BD、DE、EC滿足的等量關(guān)系,并寫出推理過程。若∠B,∠D都不是直角,則當∠B與∠D滿足等量關(guān)系 時,仍有EF=BE+DF;(3)聯(lián)想拓展如圖3,在△ABC中,∠BAC=90176。,點E.F分別在正方形ABCD的邊BC、CD上,∠EAF=45176。;∵點B′是點B關(guān)于直線AE的對稱點,∴AE垂直平分BB′;在Rt△AOB和Rt△BOE中,BO2=AB2﹣AO2=BE2﹣(AE﹣AO)2將AB=4cm,BE=3cm,AE=5cm,∴AO= cm,∴BO==cm,∴BB′=2BO=cm,∴在Rt△BB39?!唷螧B39。交AE于點O,由折線法及點E是BC的中點,∴EB=EB′=EC,∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;又∵△BB39。即∠AEF=90176。EC的角平分線,即∠B′EF=∠FEC,∴∠AEF=180176。即可得到AE⊥EF;(2)連接BB′,通過折疊,可知∠EBB′=∠EB′B,由
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1