freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)——二次函數(shù)的綜合壓軸題專題復(fù)習(xí)含答案解析-文庫吧資料

2025-03-30 22:20本頁面
  

【正文】 3;(2)如答圖1,∵拋物線解析式為:y=﹣x2﹣2x+3,∴其對(duì)稱軸為x==﹣1,∴設(shè)P點(diǎn)坐標(biāo)為(﹣1,a),當(dāng)x=0時(shí),y=3,∴C(0,3),M(﹣1,0)∴當(dāng)CP=PM時(shí),(﹣1)2+(3﹣a)2=a2,解得a=,∴P點(diǎn)坐標(biāo)為:P1(﹣1,);∴當(dāng)CM=PM時(shí),(﹣1)2+32=a2,解得a=177。20202021中考數(shù)學(xué)——二次函數(shù)的綜合壓軸題專題復(fù)習(xí)含答案解析一、二次函數(shù)1.(10分)(2015?佛山)如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫,斜坡可以用一次函數(shù)y=x刻畫.(1)請(qǐng)用配方法求二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);(2)小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo);(3)連接拋物線的最高點(diǎn)P與點(diǎn)O、A得△POA,求△POA的面積;(4)在OA上方的拋物線上存在一點(diǎn)M(M與P不重合),△MOA的面積等于△POA的面積.請(qǐng)直接寫出點(diǎn)M的坐標(biāo).【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】試題分析:(1)利用配方法拋物線的一般式化為頂點(diǎn)式,即可求出二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);(2)聯(lián)立兩解析式,可求出交點(diǎn)A的坐標(biāo);(3)作PQ⊥x軸于點(diǎn)Q,AB⊥x軸于點(diǎn)B.根據(jù)S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入數(shù)值計(jì)算即可求解;(4)過P作OA的平行線,交拋物線于點(diǎn)M,連結(jié)OM、AM,由于兩平行線之間的距離相等,根據(jù)同底等高的兩個(gè)三角形面積相等,可得△MOA的面積等于△POA的面積.設(shè)直線PM的解析式為y=x+b,將P(2,4)代入,求出直線PM的解析式為y=x+3.再與拋物線的解析式聯(lián)立,得到方程組,解方程組即可求出點(diǎn)M的坐標(biāo).試題解析:(1)由題意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo)為(2,4);(2)聯(lián)立兩解析式可得:,解得:,或.故可得點(diǎn)A的坐標(biāo)為(,);(3)如圖,作PQ⊥x軸于點(diǎn)Q,AB⊥x軸于點(diǎn)B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=24+(+4)(﹣2)﹣=4+﹣=;(4)過P作OA的平行線,交拋物線于點(diǎn)M,連結(jié)OM、AM,則△MOA的面積等于△POA的面積.設(shè)直線PM的解析式為y=x+b,∵P的坐標(biāo)為(2,4),∴4=2+b,解得b=3,∴直線PM的解析式為y=x+3.由,解得,∴點(diǎn)M的坐標(biāo)為(,).考點(diǎn):二次函數(shù)的綜合題2.童裝店銷售某款童裝,每件售價(jià)為60元,每星期可賣100件,為了促銷該店決定降價(jià)銷售,經(jīng)市場調(diào)查發(fā)現(xiàn):每降價(jià)1元,每星期可多賣10件,已知該款童裝每件成本30元,設(shè)降價(jià)后該款童裝每件售價(jià)元,每星期的銷售量為件.(1)降價(jià)后,當(dāng)某一星期的銷售量是未降價(jià)前一星期銷售量的3倍時(shí),求這一星期中每件童裝降價(jià)多少元?(2)當(dāng)每件售價(jià)定為多少元時(shí),一星期的銷售利潤最大,最大利潤是多少?【答案】(1)這一星期中每件童裝降價(jià)20元;(2)每件售價(jià)定為50元時(shí),一星期的銷售利潤最大,最大利潤4000元.【解析】【分析】(1)根據(jù)售量與售價(jià)x(元/件)之間的關(guān)系列方程即可得到結(jié)論.(2)設(shè)每星期利潤為W元,構(gòu)建二次函數(shù)利用二次函數(shù)性質(zhì)解決問題.【詳解】解:(1)根據(jù)題意得,(60﹣x)10+100=3100,解得:x=40,60﹣40=20元,答:這一星期中每件童裝降價(jià)20元;(2)設(shè)利潤為w,根據(jù)題意得,w=(x﹣30)[(60﹣x)10+100]=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,答:每件售價(jià)定為50元時(shí),一星期的銷售利潤最大,最大利潤4000元.【點(diǎn)睛】本題考查二次函數(shù)的應(yīng)用,一元二次不等式,解題的關(guān)鍵是構(gòu)建二次函數(shù)解決最值問題,利用圖象法解一元二次不等式,屬于中考??碱}型.3.如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.已知點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)O為坐標(biāo)原點(diǎn),OC=3OA,拋物線C1的頂點(diǎn)為G.(1)求出拋物線C1的解析式,并寫出點(diǎn)G的坐標(biāo);(2)如圖2,將拋物線C1向下平移k(k>0)個(gè)單位,得到拋物線C2,設(shè)C2與x軸的交點(diǎn)為A′、B′,頂點(diǎn)為G′,當(dāng)△A′B′G′是等邊三角形時(shí),求k的值:(3)在(2)的條件下,如圖3,設(shè)點(diǎn)M為x軸正半軸上一動(dòng)點(diǎn),過點(diǎn)M作x軸的垂線分別交拋物線CC2于P、Q兩點(diǎn),試探究在直線y=﹣1上是否存在點(diǎn)N,使得以P、Q、N為頂點(diǎn)的三角形與△AOQ全等,若存在,直接寫出點(diǎn)M,N的坐標(biāo):若不存在,請(qǐng)說明理由.【答案】(1)拋物線C1的解析式為y=﹣x2+2x+3,點(diǎn)G的坐標(biāo)為(1,4);(2)k=1;(3)M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【解析】【分析】(1)由點(diǎn)A的坐標(biāo)及OC=3OA得點(diǎn)C坐標(biāo),將A、C坐標(biāo)代入解析式求解可得;(2)設(shè)拋物線C2的解析式為y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x軸于點(diǎn)D,設(shè)BD′=m,由等邊三角形性質(zhì)知點(diǎn)B′的坐標(biāo)為(m+1,0),點(diǎn)G′的坐標(biāo)為(1,m),代入所設(shè)解析式求解可得;(3)設(shè)M(x,0),則P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根據(jù)PQ=OA=1且∠AOQ、∠PQN均為鈍角知△AOQ≌△PQN,延長PQ交直線y=﹣1于點(diǎn)H,證△OQM≌△QNH,根據(jù)對(duì)應(yīng)邊相等建立關(guān)于x的方程,解之求得x的值從而進(jìn)一步求解即可.【詳解】(1)∵點(diǎn)A的坐標(biāo)為(﹣1,0),∴OA=1,∴OC=3OA,∴點(diǎn)C的坐標(biāo)為(0,3),將A、C坐標(biāo)代入y=ax2﹣2ax+c,得:,解得:,∴拋物線C1的解析式為y=﹣x2+2x+3=﹣(x﹣1)2+4,所以點(diǎn)G的坐標(biāo)為(1,4);(2)設(shè)拋物線C2的解析式為y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,過點(diǎn)G′作G′D⊥x軸于點(diǎn)D,設(shè)BD′=m,∵△A′B′G′為等邊三角形,∴G′D=B′D=m,則點(diǎn)B′的坐標(biāo)為(m+1,0),點(diǎn)G′的坐標(biāo)為(1,m),將點(diǎn)B′、G′的坐標(biāo)代入y=﹣(x﹣1)2+4﹣k,得:,解得:(舍),∴k=1;(3)設(shè)M(x,0),則P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),∴PQ=OA=1,∵∠AOQ、∠PQN均為鈍角,∴△AOQ≌△PQN,如圖2,延長PQ交直線y=﹣1于點(diǎn)H,則∠QHN=∠OMQ=90176。又∵△AOQ≌△PQN,∴OQ=QN,∠AOQ=∠PQN,∴∠MOQ=∠HQN,∴△OQM≌△QNH(AAS),∴OM=QH,即x=﹣x2+2x+2+1,解得:x=(負(fù)值舍去),當(dāng)x=時(shí),HN=QM=﹣x2+2x+2=,點(diǎn)M(,0),∴點(diǎn)N坐標(biāo)為(+,﹣1),即(,﹣1);或(﹣,﹣1),即(1,﹣1);如圖3,同理可得△OQM≌△PNH,∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,解得:x=﹣1(舍)或x=4,當(dāng)x=4時(shí),點(diǎn)M的坐標(biāo)為(4,0),HN=QM=﹣(﹣x2+2x+2)=6,∴點(diǎn)N的坐標(biāo)為(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);綜上點(diǎn)M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【點(diǎn)睛】本題考查的是二次函數(shù)的綜合題,涉及到的知識(shí)有待定系數(shù)法、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)等,熟練掌握待定系數(shù)法求函數(shù)解析式、等邊三角形的性質(zhì)、全等三角
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1