【摘要】1.三角函數(shù)的誘導(dǎo)公式設(shè)0°≤α≤90°,對(duì)于任意一個(gè)0°到360°的角β,以下四種情形中有且僅有一種成立.β=?????α,當(dāng)β∈[0°,90°],180°-α,當(dāng)β∈[90°,180°],
2024-12-13 03:46
2024-12-09 10:17
【摘要】課題:三角函數(shù)的誘導(dǎo)公式(1)班級(jí):姓名:一:學(xué)習(xí)目標(biāo)1.通過(guò)學(xué)生的探究,明了三角函數(shù)的誘導(dǎo)公式的來(lái)龍去脈,理解誘導(dǎo)公式的推導(dǎo)過(guò)程;2.通過(guò)誘導(dǎo)公式的具體運(yùn)用,熟練正確地運(yùn)用公式解決一些三角函數(shù)的求值、化簡(jiǎn)和證明問(wèn)題;二:課前預(yù)習(xí)教學(xué)重點(diǎn):
2024-11-24 01:06
【摘要】三角函數(shù)的誘導(dǎo)公式(一)一、填空題1.sin585°的值為_(kāi)_______.2.若n為整數(shù),則代數(shù)式nπ+αnπ+α的化簡(jiǎn)結(jié)果是________.3.若cos(π+α)=-12,32πα2π,則sin(2π+α)=________.4.化簡(jiǎn):-α+α-π-
【摘要】三角函數(shù)的誘導(dǎo)公式(二)一、填空題1.已知f(sinx)=cos3x,則f(cos10°)=________.2.若sin(3π+α)=-12,則cos??????7π2-α=________.3.已知sin??????α-π4=13,則cos??????π4+α=________.
【摘要】課題:三角函數(shù)誘導(dǎo)公式(2)班級(jí):姓名:一:學(xué)習(xí)目標(biāo)導(dǎo)公式;式的探求和運(yùn)用,培養(yǎng)化歸能力,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力.;二:課前預(yù)習(xí)(1)思想方法:從特殊到一般;數(shù)形結(jié)合思想;對(duì)稱變換思想;(2)規(guī)律:“奇變偶不變,符號(hào)看
【摘要】三角函數(shù)的誘導(dǎo)公式(2)【學(xué)習(xí)目標(biāo)】1、能進(jìn)一步運(yùn)用誘導(dǎo)公式求出任意角的三角函數(shù)值2、能通過(guò)公式的運(yùn)用,了解未知到已知、復(fù)雜到簡(jiǎn)單的轉(zhuǎn)化過(guò)程3、進(jìn)一步準(zhǔn)確記憶并理解誘導(dǎo)公式,靈活運(yùn)用誘導(dǎo)公式求值??谠E:奇變偶不變,符號(hào)看象限【重點(diǎn)難點(diǎn)】誘導(dǎo)公式的推導(dǎo)和應(yīng)用【自主學(xué)習(xí)】1、復(fù)習(xí)四組誘導(dǎo)公式:函
【摘要】1.三角函數(shù)的應(yīng)用情景:如圖,某大風(fēng)車(chē)的半徑為2m,每12s旋轉(zhuǎn)一周,它的最低點(diǎn)O離地面m,風(fēng)車(chē)圓周上一點(diǎn)A從最低點(diǎn)O開(kāi)始,運(yùn)動(dòng)t(s)后與地面的距離為h(m).思考:你能求出函數(shù)h=f(t)的關(guān)系式嗎?你能畫(huà)出它的圖象嗎?1.已知函數(shù)類(lèi)型求解析式的方法是________.答案:待
2024-12-12 20:23
【摘要】1.同角三角函數(shù)關(guān)系已知sinα-cosα=-55,180°<α<270°,你能求出tanα的值嗎?你能化簡(jiǎn)sinθ-cosθtanθ-1嗎???為此,我們有必要研究同角三角函數(shù)的關(guān)系.1.同角三角函數(shù)的平方關(guān)系是________________,使此式成立
【摘要】3.2二倍角的三角函數(shù)我們知道,兩角和的正弦、余弦、正切公式與兩角差的正弦、余弦、正切公式是可以互相化歸的.當(dāng)兩角相等時(shí),兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?二倍角公式又有何重要作用呢?1.在S(α+β)中,令________,可得到sin2α=________,它簡(jiǎn)記為S
2024-12-12 02:41
【摘要】yOxαP(x,y)α的終邊P(x,y)α的終邊αyOx任意角的三角函數(shù)的定義xrMyMxryyOxαP(x,y)α的終邊P(x,y)α的終邊αyOxxrMyMxrysinyr
2024-08-16 18:30
2024-12-09 10:16
【摘要】三角函數(shù)的誘導(dǎo)公式一、關(guān)于教學(xué)內(nèi)容的思考教學(xué)任務(wù):幫助學(xué)生理解,22??????與?的正弦、余弦、正切值的關(guān)系;會(huì)利用誘導(dǎo)公式進(jìn)行化簡(jiǎn)、求值。教學(xué)目的:引導(dǎo)學(xué)生如何利用終邊上點(diǎn)的坐標(biāo)探討上述關(guān)系;教學(xué)意義:培養(yǎng)學(xué)生數(shù)形結(jié)合的思想。二、教學(xué)過(guò)程1.理解,22??????與?的正弦、余弦、正切值的關(guān)系
2024-11-23 20:39
【摘要】三角函數(shù)的誘導(dǎo)公式一、錯(cuò)解點(diǎn)擊是否存在角α,β,α∈(2??,2?),β∈(0,π),使得等式sin(3π-α)=2cos(2?-β),3cos(-α)=-2cos(π+β)同時(shí)成立?若存在,求出α,β的值;若不存在,請(qǐng)說(shuō)明理由.錯(cuò)解:將已知條件化為???????,cos2
【摘要】1.三角函數(shù)的圖象與性質(zhì)情景:前面我們學(xué)習(xí)了三角函數(shù)的誘導(dǎo)公式,我們是借助于單位圓推導(dǎo)出來(lái)的.思考:我們能否借助三角函數(shù)的圖象來(lái)推導(dǎo)或直接得出三角函數(shù)的一些性質(zhì)呢?1.“五點(diǎn)法”作正弦函數(shù)圖象的五個(gè)點(diǎn)是__________、________、________、________、________.答案:(0,0
2024-12-12 20:24