【摘要】1.三角函數(shù)的圖象與性質(zhì)情景:前面我們學(xué)習(xí)了三角函數(shù)的誘導(dǎo)公式,我們是借助于單位圓推導(dǎo)出來的.思考:我們能否借助三角函數(shù)的圖象來推導(dǎo)或直接得出三角函數(shù)的一些性質(zhì)呢?1.“五點法”作正弦函數(shù)圖象的五個點是__________、________、________、________、________.答案:(0,0
2024-12-12 20:24
2024-12-09 10:17
【摘要】課題:三角函數(shù)的圖象與性質(zhì)(二)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、掌握正、余弦函數(shù)的定義域和值域;2、進一步理解三角函數(shù)的周期性和奇偶性的概念,會求它們的周期,會判斷它們的奇偶性;3、能正確求出正、余弦函數(shù)的單調(diào)區(qū)間【課前預(yù)習(xí)】1、定義域:
2024-11-23 21:43
【摘要】三角函數(shù)的圖象與性質(zhì)(三)一、填空題1.函數(shù)y=tanx-1的定義域是____________.2.函數(shù)y=3tan(ωx+π6)的最小正周期是π2,則ω=________.3.函數(shù)y=tan??????x+2π5,x∈R且x≠110π+kπ,k∈Z離坐標(biāo)原點最近的對稱中心的坐標(biāo)是____
【摘要】三角函數(shù)的圖象與性質(zhì)(一)一、填空題1.函數(shù)y=2cosx+1的定義域是______________.2.在(0,π)內(nèi)使sinx|cosx|的x的取值范圍是________.3.方程sinx=x10的根的個數(shù)是________.4.設(shè)0≤x≤2π,且|cosx-sinx|=sinx-
【摘要】三角函數(shù)的圖象與性質(zhì)(二)一、填空題1.函數(shù)y=sin(π+x),x∈??????-π2,π的單調(diào)增區(qū)間是____________.2.函數(shù)y=2sin(2x+π3)(-π6≤x≤π6)的值域是________.3.sin1,sin2,sin3按從小到大排列的順序為________________
【摘要】課題:三角函數(shù)的圖象與性質(zhì)(3)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1.了解利用正切線畫出正切函數(shù)圖象的方法,能通過觀察正切函數(shù)圖象,利用類比思想歸納正切函數(shù)的性質(zhì);2.提升學(xué)生作圖能力,分析能力和解決問題的能力,進行數(shù)形結(jié)合思想和類比思想的滲透.【課前
2024-11-24 01:06
【摘要】課題:三角函數(shù)的圖象和性質(zhì)(一)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、能借助正弦線畫出正弦函數(shù)的圖象,并在此基礎(chǔ)上由誘導(dǎo)公式畫出余弦函數(shù)的圖象2、掌握五點法作正、余弦函數(shù)圖象的方法,并會用此方法畫出??0,2?上的正弦曲線、余弦曲線【課前預(yù)習(xí)】1、正弦函數(shù)
【摘要】1.三角函數(shù)的應(yīng)用情景:如圖,某大風(fēng)車的半徑為2m,每12s旋轉(zhuǎn)一周,它的最低點O離地面m,風(fēng)車圓周上一點A從最低點O開始,運動t(s)后與地面的距離為h(m).思考:你能求出函數(shù)h=f(t)的關(guān)系式嗎?你能畫出它的圖象嗎?1.已知函數(shù)類型求解析式的方法是________.答案:待
2024-12-12 20:23
【摘要】1.同角三角函數(shù)關(guān)系已知sinα-cosα=-55,180°<α<270°,你能求出tanα的值嗎?你能化簡sinθ-cosθtanθ-1嗎???為此,我們有必要研究同角三角函數(shù)的關(guān)系.1.同角三角函數(shù)的平方關(guān)系是________________,使此式成立
2024-12-13 03:46
【摘要】第一章三角函數(shù)正切函數(shù)的圖象與性質(zhì)?α在第一象限時:?正弦線:sinα=MP0?余弦線:cosα=0M0?正切線:tanα=AT0α在第二象限時:正弦線:sinα=M’P’0余弦線:cosα=0M’0正切線:
2024-11-22 08:49
【摘要】1.三角函數(shù)的誘導(dǎo)公式設(shè)0°≤α≤90°,對于任意一個0°到360°的角β,以下四種情形中有且僅有一種成立.β=?????α,當(dāng)β∈[0°,90°],180°-α,當(dāng)β∈[90°,180°],
【摘要】第一章三角函數(shù)正余弦函數(shù)的圖象和性質(zhì)xy(1).列表(2).描點(3).連線6?3?2?32?65??67?34?32?35?611?2?021230121?23?21230021?23?1????2,0,sin??xxy描點法作函數(shù)圖象的主要步驟有什么?-
【摘要】第一章三角函數(shù)正余弦函數(shù)的圖象和性質(zhì)正弦、余弦函數(shù)的圖象和性質(zhì)x6?yo-?-12?3?4?5?-2?-3?-4?1?y=sinx(x?R)x6?o-?-12?3?4?5?-2?-3?-4?1?yy=cosx(x?R)定義域
2024-11-21 23:32
【摘要】3.2二倍角的三角函數(shù)我們知道,兩角和的正弦、余弦、正切公式與兩角差的正弦、余弦、正切公式是可以互相化歸的.當(dāng)兩角相等時,兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?二倍角公式又有何重要作用呢?1.在S(α+β)中,令________,可得到sin2α=________,它簡記為S
2024-12-12 02:41