【摘要】?jī)牲c(diǎn)間的距離【課時(shí)目標(biāo)】1.理解并掌握平面上兩點(diǎn)之間的距離公式的推導(dǎo)方法.2.能熟練應(yīng)用兩點(diǎn)間的距離公式解決有關(guān)問(wèn)題,進(jìn)一步體會(huì)解析法的思想.1.若平面上兩點(diǎn)P1、P2的坐標(biāo)分別為P1(x1,y1),P2(x2,y2),則P1、P2兩點(diǎn)間的距離公式為|P1P2|=________________.特別地,原
2024-12-09 06:42
【摘要】§兩點(diǎn)間的距離一、教材分析距離概念,在日常生活中經(jīng)常遇到,學(xué)生在初中平面幾何中已經(jīng)學(xué)習(xí)了兩點(diǎn)間的距離、點(diǎn)到直線的距離、兩條平行線間的距離的概念,到高一立體幾何中又學(xué)習(xí)了異面直線距離、點(diǎn)到平面的距離、兩個(gè)平面間的距離等.其基礎(chǔ)是兩點(diǎn)間的距離,許多距離的計(jì)算都轉(zhuǎn)化為兩點(diǎn)間的距離.在平面直角坐標(biāo)系中任意兩點(diǎn)間的距
2024-11-23 00:41
【摘要】問(wèn)題探究探究1:已知平面上兩點(diǎn)P1(-1,2),P2(2,)求P1,P2的距離|P1P2|?7探究2:已知平面上兩點(diǎn)P1(x1,y1),P2(x2,y2),如何求P1,P2的距離|P1P2|?探究3:通過(guò)上訴探究,請(qǐng)問(wèn)研究?jī)牲c(diǎn)距離你有幾種常用的分析策略?探究4:通已知A(-1,2)
2024-11-22 01:47
【摘要】?jī)牲c(diǎn)間的距離(一)教學(xué)目標(biāo)1.知識(shí)與技能:掌握直角坐標(biāo)系兩點(diǎn)間的距離,用坐標(biāo)證明簡(jiǎn)單的幾何問(wèn)題。2.過(guò)程與方法:通過(guò)兩點(diǎn)間距離公式的推導(dǎo),能更充分體會(huì)數(shù)形結(jié)合的優(yōu)越性。;3.情態(tài)和價(jià)值:體會(huì)事物之間的內(nèi)在聯(lián)系,能用代數(shù)方法解決幾何問(wèn)題。(二)教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn),兩點(diǎn)間距離公式的推導(dǎo);難點(diǎn),應(yīng)用兩點(diǎn)間距離公式證明幾何問(wèn)題。(三)教學(xué)方法啟發(fā)引導(dǎo)式教學(xué)
2025-06-10 23:22
【摘要】?jī)牲c(diǎn)間的距離∣∣∣∣∣PQ∣=若P(X1,Y1),Q(X2,Y2),則PQ中點(diǎn)M(X,Y)X=,Y=思考P
2024-12-12 13:11
【摘要】?jī)牲c(diǎn)間的距離一、教材分析距離概念,在日常生活中經(jīng)常遇到,學(xué)生在初中平面幾何中已經(jīng)學(xué)習(xí)了兩點(diǎn)間的距離、點(diǎn)到直線的距離、兩條平行線間的距離的概念,到高一立體幾何中又學(xué)習(xí)了異面直線距離、點(diǎn)到平面的距離、兩個(gè)平面間的距離等.其基礎(chǔ)是兩點(diǎn)間的距離,許多距離的計(jì)算都轉(zhuǎn)化為兩點(diǎn)間的距離.在平面直角坐標(biāo)系中任意兩點(diǎn)間的距離是解析幾何重要的基本概念和公式.
2024-12-12 07:03
【摘要】問(wèn)題探究;,,,,,) (;,,,,,) ?。ň嚯x:兩點(diǎn),再求它們之間的,標(biāo)出:在空間直角坐標(biāo)系中 探究)753()106(2)413()532(11BABABA。與原點(diǎn)間的距離是,,一點(diǎn)中,任意:在空間直角坐標(biāo)系 探究________zyxpOxyz)(2表示什么圖形?,那么是定長(zhǎng):如果
2024-11-21 03:40
【摘要】直線的兩點(diǎn)式方程【課時(shí)目標(biāo)】1.掌握直線方程的兩點(diǎn)式.2.掌握直線方程的截距式.3.進(jìn)一步鞏固截距的概念.1.直線方程的兩點(diǎn)式和截距式名稱(chēng)已知條件示意圖方程使用范圍兩點(diǎn)式P1(x1,y1),P2(x2,y2),其中x1≠x2,y1≠y2y-y1
【摘要】空間兩點(diǎn)間的距離【課時(shí)目標(biāo)】1.掌握空間兩點(diǎn)間的距離公式.2.能夠用空間兩點(diǎn)間距離公式解決簡(jiǎn)單的問(wèn)題.1.在空間直角坐標(biāo)系中,給定兩點(diǎn)P1(x1,y1,z1),P2(x2,y2,z2),則P1P2=______________________________________________________________
2024-12-09 10:19
【摘要】問(wèn)題探究探究1:已知平面上兩點(diǎn)P1(-1,2),P2(2,)求P1,P2的距離|P1P2|?7探究2:已知平面上兩點(diǎn)P1(x1,y1),P2(x2,y2),如何求P1,P2的距離|P1P2|?探究3:通過(guò)上訴探究,請(qǐng)問(wèn)研究?jī)牲c(diǎn)距離你有幾種常用的分析策略?探究4:通已知A(-1,2),
2025-03-14 14:58
【摘要】平面上兩點(diǎn)間的距離【課時(shí)目標(biāo)】1.理解并掌握平面上兩點(diǎn)之間的距離公式的推導(dǎo)方法.2.能熟練應(yīng)用兩點(diǎn)間的距離公式解決有關(guān)問(wèn)題,進(jìn)一步體會(huì)解析法的思想.1.若平面上兩點(diǎn)P1、P2的坐標(biāo)分別為P1(x1,y1),P2(x2,y2),則P1、P2兩點(diǎn)間的距離公式為P1P2=______________.特別地,原點(diǎn)O(
【摘要】§空間兩點(diǎn)間的距離公式一、教材分析平面直角坐標(biāo)系中,兩點(diǎn)之間的距離公式是學(xué)生已學(xué)的知識(shí),不難把平面上的知識(shí)推廣到空間,遵循從易到難、從特殊到一般的認(rèn)識(shí)過(guò)程,利用類(lèi)比的思想方法,借助勾股定理得到空間任意一點(diǎn)到原點(diǎn)的距離;從平面直角坐標(biāo)系中的方程x2+y2=r2表示以原點(diǎn)為圓心,r為半徑的圓,推廣到空間
2024-12-07 11:32
【摘要】人教B版數(shù)學(xué)必修2:空間兩點(diǎn)間的距離公式1.教學(xué)任務(wù)分析通過(guò)特殊到一般的情況推導(dǎo)出空間兩點(diǎn)間的距離公式2.教學(xué)重點(diǎn)和難點(diǎn)重點(diǎn):空間兩點(diǎn)間的距離公式難點(diǎn):一般情況下,空間兩點(diǎn)間的距離公式的推導(dǎo)。3.教學(xué)基本流程4、
2024-11-23 23:22
【摘要】人教B版數(shù)學(xué)必修2:空間兩點(diǎn)的距離公式教學(xué)目標(biāo):探索并得出空間兩點(diǎn)間的距離公式教學(xué)重點(diǎn):探索并得出空間兩點(diǎn)間的距離公式教學(xué)過(guò)程:給定空間兩點(diǎn)),,(1111zyxM和),,(2222zyxM,過(guò)21,MM各作三個(gè)平面分別垂直于三個(gè)坐標(biāo)軸。這六個(gè)平面構(gòu)成—個(gè)以線段21MM為一條對(duì)角線的長(zhǎng)方體,見(jiàn)圖
2024-11-23 23:21
【摘要】空間兩點(diǎn)間的距離習(xí)題課蘇教版必修2【課時(shí)目標(biāo)】1.正確理解直線與圓的概念并能解決簡(jiǎn)單的實(shí)際問(wèn)題.2.能利用直線與圓的位置關(guān)系解決簡(jiǎn)單的實(shí)際問(wèn)題.3.體會(huì)用代數(shù)方法處理幾何問(wèn)題的思想.用坐標(biāo)方法解決平面幾何問(wèn)題的“三步曲”:一、填空題1.實(shí)數(shù)x,y滿足方程x+y-4=0,則x2+y2的最小值為_(kāi)