【摘要】課題:§一元二次不等式及其解法第1課時(shí)授課類型:新授課【教學(xué)目標(biāo)】1.知識(shí)與技能:理解一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系,掌握?qǐng)D象法解一元二次不等式的方法;培養(yǎng)數(shù)形結(jié)合的能力,培養(yǎng)分類討論的思想方法,培養(yǎng)抽象概括能力和邏輯思維能力;2.過(guò)程與方法:經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過(guò)程和通過(guò)函數(shù)圖象
2024-12-06 10:14
【摘要】一元二次不等式的解法第二課時(shí)一、復(fù)習(xí)(1)化成標(biāo)準(zhǔn)形式ax2+bx+c0(a0)ax2+bx+c0)(2)判定△與0的關(guān)系,并求出方程ax2+bx+c=0的實(shí)根;
2024-11-22 12:16
【摘要】一元二次不等式及其解法(第二課時(shí))教學(xué)目標(biāo):1、知識(shí)與技能目標(biāo):(1)理解二次函數(shù)、一元二次方程、一元二次不等式的關(guān)系.(2)熟練掌握一元二次不等式的解法.(3)掌握含參數(shù)的一元二次不等式的解法及簡(jiǎn)單的不等式中的恒成立問(wèn)題的解題方法.(4)培養(yǎng)學(xué)生數(shù)形結(jié)合的能力,分類討論的思想方法,培養(yǎng)抽象概括能力和
2024-12-13 03:40
【摘要】一元二次不等式及其解法(第2課時(shí))學(xué)習(xí)目標(biāo)、一元二次不等式與二次函數(shù)的關(guān)系,進(jìn)一步熟悉一元二次不等式的解法...合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境題組一:再現(xiàn)型題組解答下列各題:(1)已知二次函數(shù)f(x)=ax2+bx+c的圖象如圖所示,則一元二次方程ax2+bx+c=0的解是;一
【摘要】一元二次不等式及其解法(第二課時(shí))一、本節(jié)數(shù)學(xué)內(nèi)容的本質(zhì)、地位、作用分析:這一節(jié)課是《一元二次不等式及其解法》的第二課時(shí),在本節(jié)課之前,學(xué)生已學(xué)習(xí)了二次函數(shù),對(duì)一元二次不等式的解法有了初步的了解,這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。一元二次不等式解法是解不等式的基礎(chǔ)和核心,它在高中代數(shù)中起著廣泛應(yīng)用的工具作用,蘊(yùn)藏著“數(shù)與形結(jié)合”的重要思想方法,它已成為代
【摘要】一元二次不等式及其解法A組基礎(chǔ)鞏固1.二次方程ax2+bx+c=0的兩根為-2,3,a0的解集為()A.{x|x3或x2或x-3}C.{x|-2x3}D.{x|-3x2}
【摘要】一元二次不等式及其解法一.引言:本講學(xué)習(xí)要求:掌握二次函數(shù)的概念、圖象及性質(zhì);理解一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系,掌握?qǐng)D象法解一元二次不等式的方法;能利用二次函數(shù)研究一元二次方程的實(shí)根分布條件;能求二次函數(shù)的區(qū)間最值;培養(yǎng)數(shù)形結(jié)合的能力,培養(yǎng)分類討論的思想方法,培養(yǎng)抽象概括能力和邏輯思維能力.學(xué)習(xí)重點(diǎn)為:二次函數(shù)、一元二次方程及一元二次
【摘要】一元二次不等式及其解法本節(jié)課是人教A版高中數(shù)學(xué)必修5中《》的第一課時(shí)。下面,我將分別從教學(xué)內(nèi)容解析、教學(xué)目標(biāo)解析、教學(xué)問(wèn)題診斷、教法與學(xué)法分析、教學(xué)效果分析等五個(gè)方面對(duì)本節(jié)課的教學(xué)設(shè)計(jì)進(jìn)行說(shuō)明。一、教學(xué)內(nèi)容解析本節(jié)課是在學(xué)習(xí)了不等關(guān)系及不等式的基本性質(zhì)之后進(jìn)行的,其主要內(nèi)容是從實(shí)際情境中抽象出一元二次不等式模型、一
【摘要】一元二次不等式及其解法(第1課時(shí))學(xué)習(xí)目標(biāo)、一元二次不等式與二次函數(shù)的關(guān)系..合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境問(wèn)題1:觀察不等式x2-4x0,它們有什么共同特征?怎樣給這樣的不等式命名?它的一般形式是什么?問(wèn)題2:請(qǐng)嘗試求解不等式x2-4x0.
【摘要】知識(shí)回顧三個(gè)兩次模塊回顧練習(xí)010340323107320144112222????????????xxxxxxxx.)()()()(求不等式的解集????。,求丨,丨已知集合 BAxxxBxxA.?034016222????
2024-11-21 23:16
【摘要】三種學(xué)習(xí)能力一、獨(dú)立探求知識(shí)的能力這種能力也可以叫自學(xué)能力,在外界條件完全相同的情況下,不同的學(xué)生所取得的學(xué)習(xí)成績(jī)是不同的,這有多方面的原因,但其中自學(xué)能力是一個(gè)重要原因.那些優(yōu)秀的同學(xué)往往具有較強(qiáng)的自學(xué)能力,他們不僅僅滿足在老師的指導(dǎo)下學(xué)習(xí),更注重獨(dú)立探求知識(shí).他們注重對(duì)書(shū)本的自學(xué)理解,遇到問(wèn)題,并不急于求教,而是首先通過(guò)獨(dú)立思考來(lái)解決,他們總是根
【摘要】第2課時(shí)一元二次不等式解法的應(yīng)用1.若ax2+bx+c≥0的解集是空集,則二次函數(shù)f(x)=ax2+bx+c的圖象開(kāi)口向,且與x軸交點(diǎn).2.若ax2+bx+c0的解集是實(shí)數(shù)集R,則二次函數(shù)f(x)=ax2+bx+c的圖象開(kāi)口向,且二次三項(xiàng)式的判別式Δ0.
2024-12-04 12:27
【摘要】一元二次不等式的解法課件問(wèn)題:(1)如何解一元二次方程(2)二次函數(shù)的圖象是什么曲線?(3)一元二次方程的解與二次函數(shù)的圖象有什么聯(lián)系?)0(02????acbxax)0(2?
2024-11-21 11:59
【摘要】一元二次不等式及其解法同步練習(xí)(一)選擇題1、不等式047223???xxx的解集為(A、??????????4021xxx或B、??????????421xoxx或[C、?????????421xxD、?
2024-11-19 13:24
2025-03-14 14:54