【摘要】第二章一、選擇題1.平面α的一個法向量為n1=(4,3,0),平面β的一個法向量為n2=(0,-3,4),則平面α與平面β夾角的余弦值為()A.-925B.925C.725D.以上都不對[答案]B[解析]cos〈n1,n2〉=n1·n2|n1||n
2024-12-04 22:16
【摘要】課題:夾角的計算學(xué)習(xí)目標(biāo):知識與技能:掌握空間向量的夾角公式及其簡單應(yīng)用;學(xué)生學(xué)會選擇恰當(dāng)?shù)姆椒ㄇ髪A角.過程與方法:經(jīng)歷知識的發(fā)生、發(fā)展和形成過程,提高觀察分析、類比轉(zhuǎn)化的能力;學(xué)生通過用向量法解決空間角的問題,提高數(shù)形結(jié)合能力和分析問題、解決問題的能力.情感態(tài)度價值觀:提高學(xué)生的
2024-11-22 18:59
【摘要】第一章一、選擇題1.下列語句中不是命題的是()A.3≥6B.二次函數(shù)不是偶函數(shù)C.x>0D.對于x∈R,總有x2>0[答案]C[解析]C選項x的范圍未給出,不能判斷真假.2.下列命題中,假命題的個數(shù)為()①2不是素數(shù);②自然數(shù)不都大于0;③
【摘要】第二章一、選擇題1.下列說法中正確的是()A.任意兩個空間向量都可以比較大小B.方向不同的空間向量不能比較大小,但同向的空間向量可以比較大小C.空間向量的大小與方向有關(guān)D.空間向量的??梢员容^大小[答案]D[解析]任意兩個空間向量,不論同向還是不同向均不存在大小關(guān)系,故A、B不正確;
2024-12-04 11:35
【摘要】第三章第1課時一、選擇題1.雙曲線x210-y22=1的焦距為()A.32B.42C.33D.43[答案]D[解析]c2=a2+b2=10+2=12,則2c=43,故選D.2.已知平面內(nèi)有一定線段AB,其長度為4,動點P滿足|PA
【摘要】第三章第2課時一、選擇題1.下列曲線中離心率為62的是()A.x22-y24=1B.x24-y22=1C.x24-y26=1D.x24-y210=1[答案]B[解析]雙曲線的離心率e=ca=a2+b2a2
2024-12-04 05:16
【摘要】第一章一、選擇題1.下列命題中全稱命題的個數(shù)為()①平行四邊形的對角線互相平分;②梯形有兩邊平行;③存在一個菱形,它的四條邊不相等.A.0B.1C.2D.3[答案]C[解析]①②是全稱命題,③是特稱命題.2.下列命題:(1)至少有一個x,使x2
2024-12-07 00:16
【摘要】第二章一、選擇題1.若平面α,β的一個法向量分別為(-1,2,4),(x,-1,-2),并且α⊥β,則x的值為()A.12B.-12C.10D.-10[答案]D[解析]∵α⊥β,∴它們的法向量也互相垂直,∴(-1,2,4)·(x,-1,-2)=0,
【摘要】第三章第1課時一、選擇題1.在平面直角坐標(biāo)系內(nèi),到點(1,1)和直線x+2y=3的距離相等的點的軌跡是()A.直線B.拋物線C.圓D.雙曲線[答案]A[解析]∵點(1,1)在直線x+2y=3上,故所求點的軌跡是過點(1,1)且與直線x+2y=3垂直
【摘要】第三章第2課時一、選擇題1.設(shè)直線y=a(a∈R)與曲線y=|3-x2|的公共點個數(shù)為m,那么下列不能成立的是()A.m=4B.m=3C.m=2D.m=1[答案]D[解析]利用數(shù)形結(jié)合,易得兩曲線不可能有一個公共點.2.拋物線與直線有一個公共點是直線與拋物線
【摘要】課題距離的計算學(xué)習(xí)目標(biāo):知識與技能:掌握空間兩條直線間距離的概念,掌握點與平面、直線與平面、平面與平面間距離的概念,并能進(jìn)行相互轉(zhuǎn)化,通過解三角形知識求出它們的距離。過程與方法:經(jīng)歷向量運算平面到空間推廣的過程,進(jìn)一步掌握類比的數(shù)學(xué)思想方法.情感態(tài)度與價值觀培養(yǎng)學(xué)生辯證觀,簡單與復(fù)
【摘要】第三章第2課時一、選擇題1.動圓的圓心在拋物線y2=8x上,且動圓恒與直線x+2=0相切,則動圓必過定點()A.(4,0)B.(2,0)C.(0,2)D.(0,-2)[答案]B[解析]∵圓心到直線x+2=0的距離等于到拋物線焦點的距離,∴定點為(2,0).2.
【摘要】第三章第1課時一、選擇題1.(2021·廣東省中山一中期中)方程(2x-y+2)x2+y2-1=0表示的曲線是()A.一個點與一條直線B.兩條射線和一個圓C.兩個點D.兩個點或一條直線或一個圓[答案]B[解析]原方程等價于x2+y2-1=0,或
【摘要】第二章第2課時一、選擇題1.下列式子中正確的是()A.a(chǎn)·|a|=a2B.(a·b)2=a2·b2C.(a·b)c=a(b·c)D.|a·b|≤|a|·|b|[答案]D2.已知非零向量a,b不共線,且其模相等
【摘要】第一章一、選擇題1.(2021·湖南文,2)“12”,而x2?/“1x&l