【摘要】橢圓的幾何性質(zhì)1課題第1課時計劃上課日期:教學(xué)目標(biāo)[知識與技能1.掌握橢圓的基本幾何性質(zhì):范圍、對稱性、頂點、長軸、短軸.2.感受如何運用方程研究曲線的幾何性質(zhì)過程與方法情感態(tài)度與價值觀教學(xué)重難點橢圓的幾何性質(zhì)——范圍、對稱性、頂點教學(xué)流程\內(nèi)容\板
2024-11-24 00:30
【摘要】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)橢圓的幾何性質(zhì)(2)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):1.進(jìn)一步熟悉橢圓的基本幾何性質(zhì):范圍、對稱性、頂點、長軸、短軸,研究并理解橢圓的離心率的概念.來2.掌握橢圓標(biāo)準(zhǔn)方程中a,b,c,e的幾何意義及相互關(guān)系.教學(xué)重點:橢圓的幾何性質(zhì)——范圍、對稱性、頂點、離心率.教學(xué)難點:
2024-11-24 00:31
【摘要】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)橢圓的幾何性質(zhì)(1)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):1.掌握橢圓的基本幾何性質(zhì):范圍、對稱性、頂點、長軸、短軸.2.感受如何運用方程研究曲線的幾何性質(zhì).教學(xué)重點:橢圓的幾何性質(zhì)——范圍、對稱性、頂點.教學(xué)難點:橢圓幾何性質(zhì)的研究過程,即如何運用橢圓標(biāo)準(zhǔn)方程研究橢圓的幾何性質(zhì).教學(xué)過程:
2024-12-08 18:02
【摘要】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)橢圓的幾何性質(zhì)(1)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】;?!菊n前預(yù)習(xí)】221625400xy??表示什么樣的曲線,你能利用以前學(xué)過的知識畫出它的圖形嗎?,橢圓標(biāo)準(zhǔn)方程221(0)xyabab????有什么特點31頁至第33頁,回答
【摘要】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)橢圓的幾何性質(zhì)(2)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1.能運用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程;2.會運用幾何性質(zhì)求離心率;3.能解決與橢圓幾何性質(zhì)有關(guān)的實際問題;4.了解橢圓的第二定義及焦點與準(zhǔn)線間關(guān)系.【課前預(yù)習(xí)】1.與橢圓??0122
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)橢圓的幾何性質(zhì)課后知能檢測蘇教版選修1-1一、填空題1.x2+2y2=2的上頂點坐標(biāo)是________.【解析】將方程x2+2y2=2化為:x22+y2=1,∴a2=2,b2=1,∴b=1.∴上頂點坐標(biāo)為(0,1).
【摘要】復(fù)習(xí)::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當(dāng)焦點在X軸上時當(dāng)焦點在Y軸上時)0(12222????babyax)0(12222????
2024-11-21 23:32
【摘要】雙曲線的幾何性質(zhì)課題第1課時計劃上課日期:教學(xué)目標(biāo)知識與技能1.了解雙曲線的簡單幾何性質(zhì),如范圍、對稱性、頂點、漸近線和離心率等.2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題.過程與方法情感態(tài)度與價值觀教學(xué)重難點雙曲線的幾何性質(zhì)及初步運用教
【摘要】§橢圓及其簡單幾何性質(zhì)(1)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐?!緦W(xué)習(xí)目標(biāo)】1.根據(jù)橢圓的方程研究曲線的幾何性質(zhì),并正確地畫出它的圖形;2.根據(jù)幾何條件求出曲線方程,并利用曲線的方程研究它的性質(zhì),畫圖.【重點】根據(jù)橢圓的方程研究曲線的幾何性質(zhì),并正確地畫出它的圖形
2024-11-22 16:52
2024-11-22 08:57
2024-11-22 11:25
【摘要】拋物線的幾何性質(zhì)課題第1課時計劃上課日期:教學(xué)目標(biāo)知識與技能掌握拋物線的幾何性質(zhì),能應(yīng)用拋物線的幾何性質(zhì)解決問題過程與方法情感態(tài)度與價值觀教學(xué)重難點拋物線的幾何性質(zhì).教學(xué)流程\內(nèi)容\板書關(guān)鍵點撥加工潤色一、復(fù)習(xí)回顧拋物線的標(biāo)
【摘要】《橢圓》導(dǎo)學(xué)橢圓是我們生活中常見的一種曲線,如汽車油罐的橫截面、太陽系中九大行星及其衛(wèi)星運動的軌道、部分彗星的軌道等等都是橢圓形。研究橢圓的方程及其幾何性質(zhì),可以幫助我們解決一些實際問題。橢圓是解析幾何的重要內(nèi)容,是高考??嫉闹R點之一。知識要點梳理1、橢圓的定義:平面內(nèi)與兩個定點F1、F2的距離的和等于常數(shù)(大于│F1F2│)的點的軌跡叫做
2024-12-09 03:04
【摘要】標(biāo)準(zhǔn)方程范圍對稱性頂點坐標(biāo)焦點坐標(biāo)半軸長離心率a、b、c的關(guān)系22221(0)xyabab????|x|≤a,|y|≤b關(guān)于x軸、y軸成軸對稱;關(guān)于原點成中心對稱(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)長半
【摘要】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)雙曲線的幾何性質(zhì)(1)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):1.了解雙曲線簡單幾何性質(zhì),如范圍、對稱性、頂點、漸近線和離心率等.2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題.教學(xué)重點:雙曲線的幾何性質(zhì)及初步運用.教學(xué)難點:雙曲線的漸近線.教學(xué)過程:一、復(fù)習(xí)提問引入新課1.橢圓有哪些幾何性