【摘要】第4課時反證法.,掌握反證法證明問題的步驟..生活中的反證法:媽媽常常因家里誰做錯了事而大發(fā)雷霆.有一次,我和爸爸在看電視,妹妹和媽媽在廚房洗碗.突然,有盤子打碎了,當(dāng)時一片寂靜.我說一定是媽媽打破的.為什么呢?
2024-11-23 23:14
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第1章3反證法課時作業(yè)北師大版選修2-2一、選擇題1.反證法是()A.從結(jié)論的反面出發(fā),推出矛盾的證法B.對其否命題的證明C.對其逆命題的證明D.分析法的證明方法[答案]A[解析]反證法是先否定結(jié)論,在此基礎(chǔ)上,運用演繹推理,導(dǎo)出矛盾,從而肯定
2024-12-09 06:27
【摘要】§反證法學(xué)習(xí)目標(biāo)思維脈絡(luò)1.結(jié)合已經(jīng)學(xué)習(xí)過的實例,理解反證法的推理過程.2.能說出反證法的證明步驟.3.會用反證法證明有關(guān)命題.4.要明確適用于用反證法來證明的一類命題.121.反證法的定義(1)先假定命題結(jié)論的反面成立,在這個前提下,
2024-11-22 00:49
【摘要】反證法一.反證法證明命題“設(shè)p為正整數(shù),如果p2是偶數(shù),則p也是偶數(shù)”,我們可以不去直接證明p是偶數(shù),而是否定p是偶數(shù),然后得到矛盾,從而肯定p是偶數(shù)。具體證明步驟如下:假設(shè)p不是偶數(shù),可令p=2k+1,k為整數(shù)??傻胮2=4k2+4k+1,此式表明,p2是奇數(shù),這與假設(shè)矛盾,因此假設(shè)p不是偶數(shù)不成立,從而證明
2024-11-22 01:21
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)北師大版選修1-2一、選擇題1.(2021·微山一中高二期中)用反證法證明命題“如果ab0,那么a2b2”時,假設(shè)的內(nèi)容應(yīng)是()A.a(chǎn)2=b2B.a(chǎn)2b2C.a(chǎn)2≤b2D.a(chǎn)2b2,且a2=b
2024-12-07 00:17
【摘要】第2課時函數(shù)的極值,會從幾何直觀理解函數(shù)的極值與導(dǎo)數(shù)的關(guān)系,并會靈活應(yīng)用..、參數(shù)取值范圍、判斷方程的根的個數(shù)等問題.若函數(shù)f(x)的定義域為區(qū)間(a,b),導(dǎo)數(shù)f'(x)在(a,b)內(nèi)的圖像如圖所示,用極值的定義你能判斷函數(shù)f(x)在(a,b)內(nèi)的極小值點有幾個嗎?問題
【摘要】PK!宻燾?[Content_Types].xml?(?
2024-12-09 06:36
【摘要】第5課時導(dǎo)數(shù)的綜合應(yīng)用、極值、最值等..函數(shù)與導(dǎo)數(shù)是高中數(shù)學(xué)的核心內(nèi)容,函數(shù)思想貫穿中學(xué)數(shù)學(xué)全過程.導(dǎo)數(shù)作為工具,提供了研究函數(shù)性質(zhì)的一般性方法.作為“平臺”,可以把函數(shù)、方程、不等式、圓錐曲線等有機地聯(lián)系在一起,在能力立意的命題思想指導(dǎo)下,與導(dǎo)數(shù)相關(guān)的問題已成為高考數(shù)學(xué)命題的必考考點之一.函數(shù)與方
2024-12-09 06:30
【摘要】第三章§4理解教材新知把握熱點考向應(yīng)用創(chuàng)新演練考點一考點二考點三1.問題:在今天商品大戰(zhàn)中,廣告成了電視節(jié)目中的一道美麗的風(fēng)景線,幾乎所有的廣告商都熟諳這樣的命題變換藝術(shù).如宣傳某種食品,其廣告詞為:“擁有的人們都幸福,幸福的人們都擁有”.該廣告詞實際說明了
2024-11-22 08:08
【摘要】第2課時微積分基本定理..1664年秋,牛頓開始研究微積分問題,他反復(fù)閱讀笛卡兒《幾何學(xué)》,對笛卡兒求切線的“圓法”產(chǎn)生了濃厚的興趣并試圖尋找更好的方法,以前,面積總是被看成是無限小不可分量之和,牛頓則從確定面積的變化率入手,通過反微分計算面積.牛頓不僅揭示了面積計算與求切線的互逆關(guān)系,而且十分
2024-12-09 06:35
【摘要】第3課時定積分的簡單應(yīng)用,并能利用積分公式表進(jìn)行計算.,建立它的數(shù)學(xué)模型,并能利用積分公式表進(jìn)行計算.,體會到微積分把不同背景的問題統(tǒng)一到一起的巨大作用和實用價值.實際生活中許多變量的變化是非均勻變化的,如非勻速直線運動在某時間段內(nèi)位移;變力使物體沿直線方向移動某位移區(qū)間段內(nèi)所做的功;非均勻
2024-11-23 20:36
【摘要】間接證明--反證法1.教學(xué)目標(biāo):知識與技能:結(jié)合已經(jīng)學(xué)過的數(shù)學(xué)實例,了解間接證明的一種基本方法──反證法;了解反證法的思考過程、特點。過程與方法:多讓學(xué)生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問題和解決問題的能力;情感、態(tài)度與價值觀:通過學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣:了解反證法的思考過程、特點3
2024-12-08 21:27
【摘要】第1課時導(dǎo)數(shù)與函數(shù)的單調(diào)性,直觀探索并掌握函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系...對于函數(shù)y=x3-3x,如何判斷單調(diào)性呢?你能畫出該函數(shù)的圖像嗎?定義法是解決問題的最根本方法,但定義法較繁瑣,又不能畫出它的圖像,那該如何解決呢?問題1:增函數(shù)和減函數(shù)一般地,
【摘要】第4課時導(dǎo)數(shù)的四則運算..你能利用導(dǎo)數(shù)的定義推導(dǎo)f(x)·g(x)的導(dǎo)數(shù)嗎?若能,請寫出推導(dǎo)過程.問題1:基本初等函數(shù)的導(dǎo)數(shù)公式表:①若f(x)=c,則f'(x)=;②若f(x)=xα(α∈Q),則f'(x)=;③若f(
2024-12-09 06:39