【摘要】.圖1圖2九年級數(shù)學(xué)圓的對稱性(1)教學(xué)案學(xué)習(xí)目標(biāo):1、會利用圓的軸對稱性探究垂徑定理、證明垂徑定理;2、能利用垂徑定理進行相關(guān)的計算和證明;3、掌握垂徑定理的推論。學(xué)習(xí)重點:垂徑定理的證明與簡單應(yīng)用;學(xué)習(xí)難點:垂徑定理的證明及其簡單應(yīng)用。學(xué)習(xí)過程:一、復(fù)習(xí)提問:1、什么是軸對稱
2024-12-13 03:54
【摘要】課時課題:第三章第2節(jié)圓的對稱性(第二課時)課型:新授課授課時間:2013年2月27日星期三第一節(jié)學(xué)習(xí)目標(biāo):1.理解圓的旋轉(zhuǎn)不變性;2.利用圓的旋轉(zhuǎn)不變性研究圓心角、弧、弦之間相等關(guān)系的定理.教學(xué)重點與難點:重點:、弧、弦之間相等關(guān)系的定理.“同圓”或“等圓”的前提條件.難點:利用所學(xué)知識解決問題時忽視“同圓”或“等圓”的條件.教法
2024-08-28 05:29
【摘要】教學(xué)目標(biāo):1.知識與技能:圓的旋轉(zhuǎn)不變性,圓心角、弧、弦之間相等關(guān)系定理.2.過程與方法:通過觀察、比較、操作、推理、歸納等活動發(fā)展空間觀念、推理能力以及概括問題的能力,利用圓的旋轉(zhuǎn)不變性,研究圓心角、弧、弦之間相等關(guān)系定理.3.情感態(tài)度與價值觀:培養(yǎng)學(xué)生積極探索數(shù)學(xué)問題的態(tài)度及方法.教學(xué)重點:圓心角、弧、弦之間關(guān)系定理教學(xué)
2024-12-05 04:14
【摘要】圓的對稱性教學(xué)目標(biāo):(1)知識與能力:通過本課的學(xué)習(xí),學(xué)生在知識上要了解圓的對稱性及垂徑定理,在能力上要學(xué)會從表象中抽象出本質(zhì)規(guī)律,提高邏輯思維能力與推理能力。(2)過程與方法:在教學(xué)過程中,要讓學(xué)生親自動手去做去體會,并讓他們相互交流,然后根據(jù)實際情況加以啟發(fā),引導(dǎo)讓他們自己去總結(jié)出規(guī)律。(3)情感、態(tài)度與價值觀:A、本課
2024-11-23 08:37
【摘要】九年級數(shù)學(xué)(上)第四章:對圓的進一步認(rèn)識-垂徑定理圓的對稱性?圓是軸對稱圖形嗎?想一想1駛向勝利的彼岸如果是,它的對稱軸是什么?你能找到多少條對稱軸?●O你是用什么方法解決上述問題的??圓是中心對稱圖形嗎?如果是,它的對稱中心是什么?你能找到多少條對稱軸?你又是用什
2024-12-12 09:59
【摘要】一、教材分析:本節(jié)內(nèi)容是前面圓的性質(zhì)的重要體現(xiàn),是圓的軸對稱性的具體化,也是今后證明線段相等、角相等、弧相等、垂直關(guān)系的重要依據(jù),同時也是為進行圓的計算和作圖提供了方法和依據(jù),所以它在教材中處于非常重要的位置另外,本節(jié)課通過“實驗--觀察--猜想——合作交流——證明”的途徑,進一步培養(yǎng)學(xué)生的動手能力,觀察能力,分析、聯(lián)想能力、與人合作
2024-12-09 15:48
【摘要】圓的對稱性(一)班級姓名學(xué)號學(xué)習(xí)目標(biāo)1.經(jīng)歷探索圓的對稱性(中心對稱)及有關(guān)性質(zhì)的過程.2.理解圓的對稱性及有關(guān)性質(zhì).3.會運用圓心角、弧、弦之間的關(guān)系解決有關(guān)問題.學(xué)習(xí)重點:中心對稱性及相關(guān)性質(zhì).學(xué)習(xí)難點:運用圓心角、弧、弦之間的關(guān)系解決
2024-11-23 21:13
【摘要】圓的對稱性教學(xué)過程(一)明確目標(biāo)同學(xué)們請觀察老師手中的圓形圖片.AB為⊙O的直徑.①我把⊙O沿著AB折疊,兩旁部分互相重合,我們知道這個圓是一個軸對移圖形.②若把⊙O沿著圓心O旋轉(zhuǎn)180°時;兩旁部分互相重合,這時我們可以發(fā)現(xiàn)圓又是一個中心對稱圖形.由學(xué)生總結(jié)圓不僅是軸對稱圖形,圓也是中心對稱圖形.若一個
2024-11-23 20:34
【摘要】圓的對稱性(二)班級姓名學(xué)號學(xué)習(xí)目標(biāo)1.理解圓的對稱性(軸對稱)及有關(guān)性質(zhì).2.理解垂徑定理并運用其解決有關(guān)問題.學(xué)習(xí)重點:垂徑定理及其運用.學(xué)習(xí)難點:靈活運用垂徑定理.教學(xué)過程一、情境創(chuàng)設(shè)(1)什么是軸對稱圖形?
2024-12-09 08:57
【摘要】lOA教學(xué)內(nèi)容(1)課型新授課課時32執(zhí)教教學(xué)目標(biāo)使學(xué)生掌握切線的識別方法,并能初步運用它解決有關(guān)問題通過切線識別方法的學(xué)習(xí),培養(yǎng)學(xué)生觀察、分析、歸納問題的能力教學(xué)重點切線的識別方法教學(xué)難點方法的理解及實際運用教具準(zhǔn)備投影儀,膠片教學(xué)過程教師活動學(xué)生活動(
2024-11-23 23:47
【摘要】一、選擇題1.已知P為⊙O內(nèi)一點,且OP=2cm,如果⊙O的半徑是3cm,那么過P點的最短的弦等于[]2.在直徑是20cm的⊙O中,AB是60°,那么弦AB的弦心距是[]二、計算題3.如圖,CO是圓的半徑,AB是弦,且AB⊥CO于E,CE=1cm,AB=10cm,求半徑CO
2024-11-19 00:39
【摘要】九年級數(shù)學(xué)(上)第三章圓圓的對稱性?定理垂直于弦的直徑平分弦,并且平分弦所的兩條弧.?老師提示:?此定理是圓中一個重要的結(jié)論,三種語言要相互轉(zhuǎn)化,形成整體,才能運用自如.想一想1駛向勝利的彼岸●OABCDM└CD⊥AB,如
2024-12-12 08:37
【摘要】ABCDOFEG圓心角、弧、弦、弦心距之間的關(guān)系圓心角、弧、弦、弦心距之間的關(guān)系圓是中心對稱圖形O對稱中心為圓心我們已經(jīng)學(xué)過的圖形中,有哪些既是軸對稱圖形,又是中心對稱圖形?圓是軸對稱圖形對稱軸是任意一條過圓心的直線圓心角、弧、弦、弦心距之間的關(guān)系
2024-12-04 02:41
【摘要】.圓的對稱性(二)初中數(shù)學(xué)九年級上冊(蘇科版)?如圖,如AB=CD則()如OABCD⌒⌒
2024-12-04 03:57
【摘要】初中數(shù)學(xué)九年級上冊(蘇科版)圓的對稱性(一)1、什么是中心對稱圖形?舉例說明把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形。平行四邊形、矩形、菱形、正方形復(fù)習(xí)回憶2、圓是中心對稱圖形,圓心是它的對稱中心。1.在兩張透明紙片上,分別作半