【摘要】第一課時?學習目標?情境設置?探索研究?反思應用?歸納總結?作業(yè)學習目標?、標準方程及其求法;?、焦距、焦點位置與方程關系;?.情境設置?橢圓的定義?把平面內(nèi)與兩個定點F1、F2的距離和等于常數(shù)(大于|F1F2|)的點軌跡叫做橢圓。這兩
2024-11-23 16:17
【摘要】雙曲線的標準方程一、回顧1、橢圓的定義是什么?2、橢圓的標準方程、焦點坐標是什么?定義圖象方程焦點關系y·oxF1F2··yoF1F2··|MF1|+|MF2|=2a(2
2024-11-21 19:28
【摘要】2.雙曲線的簡單幾何性質(zhì)(共2課時)一、教學目標1.了解雙曲線的簡單幾何性質(zhì),如范圍、對稱性、頂點、漸近線和離心率等。2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題。二、教學重點、難點重點:雙曲線的幾何性質(zhì)及初步運用。難點:雙曲線的漸近線。三、教學過程(一)復習提問引入新課1.橢圓有哪些幾何性質(zhì),是
2024-12-12 08:44
【摘要】§雙曲線的簡單性質(zhì)設計人:趙軍偉審定:數(shù)學備課組【學習目標】:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).、對稱性及對稱軸,對稱中心、離心率、頂點、漸近線的概念;、會用雙曲線的定義解決實際問題;通過例題和探究了解雙曲線的第二定義,準線及焦半徑的概念..【學習重點】
2024-11-22 18:59
【摘要】曲線和方程和方程的曲線的概念課堂新授yxo?M(x0,y0)X-y=0?M(x0,y0)xyo)0(2??aaxy曲線的方程與方程的曲線:課堂新授(在合)上的點。(合在)這個方程叫做這個曲線的方程這個曲線叫做這個方程的曲線課堂新授
2024-11-22 00:48
【摘要】雙曲線的簡單性質(zhì)課程目標學習脈絡1.掌握雙曲線的范圍、對稱性、頂點、漸近線及離心率等簡單幾何性質(zhì).2.感受雙曲線在刻畫現(xiàn)實世界和解決實際問題中的作用,體會數(shù)形結合思想.雙曲線x2a2?y2b2=1(a0,b0)的簡單性質(zhì)知識拓展(1
2024-11-20 23:22
【摘要】課題雙曲線及其標準方程學習目標,幾何圖形和標準方程的推導過程...,承上啟下;可以結合實例,觀察分析,培養(yǎng)“應用數(shù)學意識”,進一步鞏固數(shù)形結合思想.學習重點:掌握雙曲線的標準方程,會利用雙曲線的定義和標準方程解決簡單的問題。學習難點:幾何圖形和標準方程的推導過程.學習方法:以講學稿為依托
2024-11-23 15:17
【摘要】課題雙曲線的簡單性質(zhì)學習目標:...,在自主探究合作交流中通過類比,分析雙曲線的幾何性質(zhì).學習重點:掌握雙曲線的簡單幾何性質(zhì)學習難點:能區(qū)別橢圓與雙曲線的性質(zhì)學習方法:以講學稿為依托的探究式教學方法。學習過程一、課前預習指導:1、雙曲線的性質(zhì):
【摘要】第三章第1課時一、選擇題1.雙曲線x210-y22=1的焦距為()A.32B.42C.33D.43[答案]D[解析]c2=a2+b2=10+2=12,則2c=43,故選D.2.已知平面內(nèi)有一定線段AB,其長度為4,動點P滿足|PA
2024-12-04 11:35
【摘要】第三章第2課時一、選擇題1.下列曲線中離心率為62的是()A.x22-y24=1B.x24-y22=1C.x24-y26=1D.x24-y210=1[答案]B[解析]雙曲線的離心率e=ca=a2+b2a2
2024-12-04 05:16
【摘要】雙曲線及其標準方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復習|M
2024-11-23 16:21
【摘要】關于x軸、y軸、原點對稱圖形方程范圍對稱性頂點離心率)0(1????babyax2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)),b(abxay001????2222Rxayay????,或關于x軸、y軸、原點對稱)1
2024-11-21 17:10
【摘要】第三章§3理解教材新知把握熱點考向應用創(chuàng)新演練知識點考點一考點二考點三如圖是阿聯(lián)酋阿布扎比國家展覽中心(ADNEC).阿布扎比是阿聯(lián)酋的首都,這個雙曲線塔形建筑是中東最大的展覽中心.它的形狀就像一條雙曲線.這是雙
2024-11-21 23:14
【摘要】§4曲線與方程曲線與方程課程目標學習脈絡1.能夠結合已學過的曲線及其方程的實例,了解曲線與方程的對應關系,進一步感受數(shù)形結合的基本思想.2.體會解析幾何的本質(zhì),用坐標法研究幾何圖形的知識,把曲線看成滿足某種條件的點的集合或軌跡,進而通過研究方程來研究曲線的性質(zhì).3.掌握求曲線方程的
2024-11-20 23:21
【摘要】鹽城市時楊中學2021年達標課教學簡案學科數(shù)學授課教師張發(fā)軍授課班級高二(7)教學內(nèi)容雙曲線的幾何性質(zhì)(2)課型新授課課題:雙曲線的幾何性質(zhì)(2)一、三維目標:1、知識與技能:使學生掌握雙曲線的如下性質(zhì):對稱性、截距、頂點、軸、中心、離心率和準線。使學生能夠根據(jù)雙曲線的漸近線、確定雙曲線的范
2024-12-12 07:53