【正文】
x20=14x30, 即 S =13x30-14x30=112x30=112. ∴ x0= 1 ,從而切點(diǎn) A (1,1) ,切線方程為 y = 2 x - 1. 四、定積分的逆運(yùn)算 定積分的逆運(yùn)算是高考命題的一個(gè)關(guān)注點(diǎn)和創(chuàng)新點(diǎn).命題時(shí)一般將定積分中的積分上限或下限參數(shù)化,在求定積分的表達(dá)式后要求將其函數(shù)化,然后再與函數(shù)的最值、性質(zhì)、單調(diào)性等混合在一起進(jìn)行考查,解決時(shí)重點(diǎn)是要分清各變量之間的關(guān)系. 若????0T x 2 d x = 9 ,則常數(shù) T 的值為 _ _ _ _ _ _ _ _ . [ 答案 ] 3 [ 解析 ] ????0T x 2 d x = 13x 3 | T0 =13T 3 = 9 , ∴ T 3 = 27 , ∴ T = 3. 課堂典例探究 求定積分 求下列定積分: ( 1 )????12( x2+ 2 x + 1 ) d x ; ( 2 )????0π( si n x - c o s x )d x ; ( 3 )????12????????x - x2+1xd x ; ( 4 )????- π0( c o s x + ex)d x . [ 分析 ] 求定積分關(guān)鍵是找被積函數(shù)的一個(gè)原函數(shù),再利用公式計(jì)算. [ 解析 ] ( 1 )????12( x2+ 2 x + 1 ) d x =????12x2d x +????122 x d x +????121d x =x33??? 21 + x2??? 21 + x ??? 21 =193. ( 2 )????0π( si n x - c o s x )d x =????0πsi n x d x -????0πc o s x d x = ( - c o s x )??? π0 - s i n x ??? π0 = 2. ( 3 )????12????????x - x2+1xd x =????12x d x -????12x2d x +????121xd x =x22??? 21 -x33??? 21 + ln x ??? 21 =32-73+ l n 2 = l n 2 -56. ( 4 )????- π0( co s x + e x )d x =????- π0co s x d x +????- π0e x d x = s i n x ??? 0- π + ex??? 0- π = 1 -1e π. [ 方法總結(jié) ] 求解 f ( x ) 在區(qū)間 [ a , b ] 上的定積分,要正確利用定積分的性質(zhì),把被積函數(shù)分解成簡單基本初等函數(shù)的導(dǎo)函數(shù)的形式,再利用微積分基本定理求解.在比較熟練的情況下,也可根據(jù)求導(dǎo)運(yùn)算與求原函數(shù)運(yùn)算互為逆運(yùn)算的關(guān)系,直接找出原函數(shù). 計(jì)算 下列定積分: ( 1 )????01 x 2 d x ; ( 2 )????01 (2 x + 1 ) d x ; ( 3 )????12????????2 x +1x d x . [ 解析 ] ( 1 ) 取 F ( x ) =13x3, ∵????????13x3′ = x2, ∴????01x2d x = F ( 1 ) - F ( 0 ) =13