【摘要】復(fù)數(shù)的幾何意義⑵一、復(fù)習(xí)回顧:復(fù)平面復(fù)數(shù)z=a+bi有序?qū)崝?shù)對(a,b)直角坐標(biāo)系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標(biāo)系來表示復(fù)數(shù)的平面x軸------實軸y軸------虛軸(數(shù))(形)------復(fù)數(shù)平面
2024-11-21 18:06
【摘要】復(fù)數(shù)的幾何意義⑴一、問題引入:我們知道實數(shù)可以用數(shù)軸上的點來表示。x01一一對應(yīng)注:規(guī)定了正方向,原點,單位長度的直線叫做數(shù)軸.實數(shù)數(shù)軸上的點(形)(數(shù))實數(shù)的幾何模型:類比實數(shù)的表示,可以用什么來表示復(fù)數(shù)?想一想?回憶…復(fù)數(shù)的一般形式?
2024-11-21 11:00
【摘要】數(shù)系的擴充和復(fù)數(shù)的概念復(fù)數(shù)的幾何意義i的基本特征是什么?(1)i2=-1;(2)i可以與實數(shù)進行四則運算,且原有的加、乘運算律仍然成立.復(fù)習(xí)鞏固虛數(shù)單位i的引入解決了負(fù)數(shù)不能開平方的矛盾,并將實數(shù)集擴充到了復(fù)數(shù)集。?復(fù)數(shù)相等的充要條件是什么?a+bi(a,b∈R
2024-08-16 05:02
【摘要】復(fù)數(shù)z=a+bi直角坐標(biāo)系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標(biāo)系來表示復(fù)數(shù)的平面x軸實軸y軸虛軸(數(shù))(形)復(fù)數(shù)平面(簡稱復(fù)平面)一一對應(yīng)z=a+bi復(fù)數(shù)的幾何意義(一)復(fù)數(shù)z=a+bi直角坐標(biāo)系中的點
2024-08-03 06:04
【摘要】復(fù)數(shù)的幾何意義在幾何上,我們用什么來表示實數(shù)?想一想?實數(shù)的幾何意義類比實數(shù)的表示,在幾何上可以用什么來表示復(fù)數(shù)?實數(shù)可以用數(shù)軸上的點來表示。實數(shù)數(shù)軸上的點(形)(數(shù))一一對應(yīng)回憶…復(fù)數(shù)的一般形式?Z=a+bi(a,b∈R)實
2024-08-26 22:03
【摘要】復(fù)數(shù)的幾何意義實數(shù)的幾何意義?新課導(dǎo)入在幾何上,我們用什么來表示實數(shù)?實數(shù)可以用數(shù)軸上的點來表示.數(shù)軸上的點實數(shù)(數(shù))一一對應(yīng)(形)Z=a+bi(a,b∈R)實部虛部一個復(fù)數(shù)由什么確定?你能否找到用來表示
2024-08-06 05:14
【摘要】J金川公司一中金玉銀復(fù)數(shù)幾何意義的應(yīng)用?|z+c|+|z-c|=2a??RcRa???,?乘法的幾何意義將向量逆時針方向旋轉(zhuǎn)θ(θ>0),并且模變?yōu)樵瓉淼腶倍得向量,則對應(yīng)的復(fù)數(shù)與對應(yīng)的復(fù)數(shù)的關(guān)系是_
2024-08-15 16:29
【摘要】J金川公司一中金玉銀復(fù)數(shù)幾何意義的應(yīng)用?|z+c|+|z-c|=2a?乘法的幾何意義將向量逆時針方向旋轉(zhuǎn)θ(θ>0),并且模變?yōu)樵瓉淼腶倍得向量,則對應(yīng)的復(fù)數(shù)與對應(yīng)的復(fù)數(shù)的關(guān)系是_______?已知:集
2024-11-10 23:15
【摘要】實數(shù)集的一些性質(zhì)和特點:(1)實數(shù)可以判定相等或不相等;(2)不相等的實數(shù)可以比較大??;(3)實數(shù)可以用數(shù)軸上的點表示;(4)實數(shù)可以進行四則運算;(5)負(fù)實數(shù)不能進行開偶次方根運算;……(1)實數(shù)集原有的有關(guān)性質(zhì)和特點能否推廣到復(fù)數(shù)集?(2)從復(fù)數(shù)的特點出發(fā),尋找復(fù)數(shù)集新的(實數(shù)集
2024-11-21 17:10
【摘要】Z=a+bi(a,b∈R)實部!虛部!復(fù)數(shù)的代數(shù)形式:一個復(fù)數(shù)由有序?qū)崝?shù)對(a,b)確定實數(shù)可以用數(shù)軸上的點來表示。實數(shù)數(shù)軸上的點一一對應(yīng)(數(shù))(形)類比實數(shù)的表示,可以用直角坐標(biāo)系中的點的點來表示復(fù)數(shù)一.復(fù)平面復(fù)數(shù)z=a+bi直角坐標(biāo)系中的點Z(a
2024-11-16 17:13
【摘要】復(fù)數(shù)的幾何意義【課標(biāo)要求】1.理解復(fù)平面及相關(guān)概念和復(fù)數(shù)與復(fù)平面內(nèi)的點、向量的對應(yīng)關(guān)系.2.掌握復(fù)數(shù)加減法的幾何意義及應(yīng)用.3.掌握復(fù)數(shù)模的概念及幾何意義.【核心掃描】1.復(fù)數(shù)的模、復(fù)數(shù)的幾何意義.(重點)2.模及復(fù)數(shù)幾何意義的應(yīng)用.(難點)自學(xué)導(dǎo)引1.復(fù)平面
2024-11-22 08:56
【摘要】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個極大值,記作y極大值=f(x0),x0是極大值點。如果f(x0)的值比x0附近所有各點的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個極小值。記作y極小值=f(x0),x0是極小值點。極大
2024-11-21 23:31
【摘要】導(dǎo)數(shù)的幾何意義英德中學(xué)高二數(shù)學(xué)備課組導(dǎo)數(shù)的幾何意義課堂引入學(xué)習(xí)目標(biāo)新知探究新知運用學(xué)習(xí)反思問題1:平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?問題2如圖直線l1是曲線C的切線嗎?l2呢?l21AB0xy對于一般的曲線
2024-10-22 16:25
【摘要】復(fù)數(shù)z=a+bi直角坐標(biāo)系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標(biāo)系來表示復(fù)數(shù)的平面x軸------實軸y軸------虛軸(數(shù))(形)------復(fù)數(shù)平面(簡稱復(fù)平面)一一對應(yīng)z=a+bi復(fù)數(shù)的幾何意義(一)
2024-11-22 08:47