【總結(jié)】復(fù)數(shù)的幾何意義習(xí)題課課時(shí)目標(biāo).,復(fù)數(shù)的模的概念..1.復(fù)數(shù)相等的條件:a+bi=c+di?____________(a,b,c,d∈R).2.復(fù)數(shù)z=a+bi(a,b∈R)對(duì)應(yīng)向量OZ→,復(fù)數(shù)z的模|z|=|OZ→|=__________.3.復(fù)數(shù)z=a+bi(a,b∈R)的模|
2024-12-05 09:31
【總結(jié)】§知識(shí)回顧平均變化率函數(shù)y=f(x)的定義域?yàn)镈,∈D,f(x)從x1到x2平均變化率為:1212)()(xxxfxfxy?????瞬時(shí)變化率當(dāng)趨于0時(shí),平均變化率就趨于函數(shù)在點(diǎn)的瞬時(shí)變化率,瞬時(shí)變化率刻畫(huà)的是函數(shù)在一點(diǎn)處變化的快慢x?0x平均變化率刻
2025-09-20 19:15
【總結(jié)】復(fù)數(shù)的幾何意義測(cè)試題一、選擇題1.已知復(fù)數(shù)z滿(mǎn)足2230zz???,則復(fù)數(shù)z的對(duì)應(yīng)點(diǎn)的軌跡是()A.一個(gè)圓B.線(xiàn)段我C.兩個(gè)點(diǎn)D.兩個(gè)圓答案:A2.對(duì)于兩個(gè)復(fù)數(shù)13i22????,13i22????,有下列四個(gè)結(jié)論:①1???;②1???;③1???
2024-11-15 02:33
【總結(jié)】復(fù)數(shù)檢測(cè)1.若復(fù)數(shù)iziz96,29421????,則復(fù)數(shù)??izz21?的實(shí)部為2.復(fù)數(shù)z滿(mǎn)足??izi4321???,則?z3.復(fù)數(shù),230iz??復(fù)數(shù)z滿(mǎn)足003zzzz???,則?z4.已知yx,
2024-11-15 11:50
【總結(jié)】幾何意義1高二數(shù)學(xué)選修1-1第三章導(dǎo)數(shù)及其應(yīng)用??????xxfxxflimxylimxf0x0x0?????????00-+==即:????000xxyfxxxfxy??=函數(shù)=在=處的導(dǎo)數(shù),記作:或???
2025-07-25 18:39
【總結(jié)】一、復(fù)習(xí)幾何意義:曲線(xiàn)在某點(diǎn)處的切線(xiàn)的斜率;(瞬時(shí)速度或瞬時(shí)加速度)物理意義:物體在某一時(shí)刻的瞬時(shí)度。2、由定義求導(dǎo)數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx????
2024-11-11 02:53
【總結(jié)】復(fù)數(shù)的幾何意義2020年12月24日實(shí)部復(fù)數(shù)通常用字母z表示,即biaz??),(RbRa??虛部其中稱(chēng)為虛數(shù)單位。i復(fù)數(shù)a+bi??????????????000000bababb,非純虛數(shù),純虛數(shù)虛數(shù)實(shí)數(shù)
2024-11-17 05:48
【總結(jié)】復(fù)數(shù)z=a+bi直角坐標(biāo)系中的點(diǎn)Z(a,b)xyobaZ(a,b)建立了平面直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面x軸實(shí)軸y軸虛軸(數(shù))(形)復(fù)數(shù)平面(簡(jiǎn)稱(chēng)復(fù)平面)一一對(duì)應(yīng)z=a+bi復(fù)數(shù)的幾何意義(一)復(fù)數(shù)z=a+bi直角坐標(biāo)系中的點(diǎn)
2025-08-16 01:49
【總結(jié)】第一篇:導(dǎo)數(shù)的幾何意義評(píng)課 《導(dǎo)數(shù)的幾何意義》評(píng)課稿 前階段聽(tīng)了一節(jié)《導(dǎo)數(shù)的幾何意義》,對(duì)這節(jié)課,我感覺(jué):(一)從教學(xué)目標(biāo)上看 1、了解導(dǎo)數(shù)概念的實(shí)際背景,體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵; 2、通過(guò)函...
2025-10-19 12:07
【總結(jié)】選修1-2導(dǎo)數(shù)的幾何意義一、選擇題1.曲線(xiàn)y=x2在x=0處的()A.切線(xiàn)斜率為1B.切線(xiàn)方程為y=2xC.沒(méi)有切線(xiàn)D.切線(xiàn)方程為y=0[答案]D[解析]k=y(tǒng)′=limΔx→0(0+Δx)2-02Δx=limΔx→0Δx=0,所以k=0,又y=x
2024-11-24 22:43
【總結(jié)】郭秀剛問(wèn)題1:已知復(fù)數(shù)Z1、Z在復(fù)平面上的對(duì)應(yīng)分別為A、B,O為原點(diǎn),∠AOB=π/6,若Z1=1+2i,求Z。XYOAB問(wèn)題2:將問(wèn)題1中向量OA平移,使O移至Q(1,1),A移至P(2,3),再繞Q點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)π/6得向量QB,求點(diǎn)B對(duì)應(yīng)的復(fù)數(shù)。XYAPQ
2024-11-17 05:27
【總結(jié)】§復(fù)習(xí)檢測(cè)5分鐘之內(nèi)完成下列兩題:(1)(2+i)(4+3i);(2)化復(fù)數(shù)為代數(shù)形式和三解形式.1111222212(cossin)(cossin),?zrizrizz?????????設(shè),則通過(guò)計(jì)算你發(fā)現(xiàn)了什么問(wèn)
2025-07-25 14:18
【總結(jié)】導(dǎo)數(shù)的幾何意義(課改教案) 教學(xué)目的 1.使學(xué)生理解導(dǎo)數(shù)的幾何意義;并會(huì)用求導(dǎo)數(shù)的方法求切線(xiàn)的斜率和切線(xiàn)方程;利用導(dǎo)數(shù)求法線(xiàn)方程. 2.通過(guò)揭示割線(xiàn)與切線(xiàn)之間的內(nèi)在聯(lián)系對(duì)學(xué)生進(jìn)行辯證唯物主義的教育. 教學(xué)重點(diǎn) 理解導(dǎo)數(shù)的幾何意義是本節(jié)的重點(diǎn). 教學(xué)過(guò)程 一、復(fù)習(xí)提問(wèn) 1.導(dǎo)數(shù)的定義是什么?求導(dǎo)數(shù)的三個(gè)步驟是什么?求函數(shù)y=x2在x=2處的導(dǎo)數(shù).
2025-09-25 17:22
【總結(jié)】公開(kāi)課?復(fù)數(shù)乘除法的幾何意義的應(yīng)用問(wèn)題2:將問(wèn)題1中向量OA平移,使O移至Q(1,1),A移至P(2,3),再繞Q點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)π/6得向量QB,求點(diǎn)B對(duì)應(yīng)的復(fù)數(shù)。XYAPQOB問(wèn)題3:設(shè)復(fù)數(shù)Z0、Z1對(duì)應(yīng)于復(fù)平面上的點(diǎn)為A、B,C為復(fù)平面上的一點(diǎn),∠CAB=θ,求C對(duì)
2025-08-16 02:19
【總結(jié)】復(fù)數(shù)的幾何意義【教學(xué)目標(biāo)】理解復(fù)數(shù)與從原點(diǎn)出發(fā)的向量的對(duì)應(yīng)關(guān)系,掌握復(fù)數(shù)的向量表示,復(fù)數(shù)模的概念及求法,復(fù)數(shù)模的幾何意義;體會(huì)數(shù)形結(jié)合的思想在數(shù)學(xué)中的重要意義;體會(huì)事物間的普遍聯(lián)系.【教學(xué)重點(diǎn)】復(fù)數(shù)的幾何意義【教學(xué)難點(diǎn)】復(fù)數(shù)的模一、課前預(yù)習(xí):(閱讀教材86--87頁(yè),完成知識(shí)點(diǎn)填空):實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,實(shí)數(shù)可以用數(shù)軸
2024-12-03 11:29