【摘要】二次函數(shù)的應(yīng)用第一課時檢測(時間45分鐘滿分100分)一.選擇題(每小題5分,共50分)1.(2017?臨沂)足球運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關(guān)系如下表:
2024-11-20 15:23
【摘要】二次函數(shù)的應(yīng)用【教學(xué)內(nèi)容】二次函數(shù)的應(yīng)用(一)【教學(xué)目標(biāo)】知識與技能掌握長方形和窗戶透光最大面積問題,體會數(shù)學(xué)的模型思想和數(shù)學(xué)應(yīng)用價值.過程與方法學(xué)會分析和表示不同背景下實際問題中的變量之間的二次函數(shù)關(guān)系,并運用二次函數(shù)的知識解決實際問題情感、態(tài)度與價值觀在探究活動中,體驗二次函數(shù)知識在實際生活中的應(yīng)用。【教學(xué)重
2024-12-02 01:28
【摘要】二次函數(shù)檢測(時間45分鐘滿分100分)一.選擇題(每小題5分,共50分)1.(2017?七里河區(qū)校級模擬)下列函數(shù)中,是二次函數(shù)的有()①y=1﹣x2②y=③y=x(1﹣x)④y=(1﹣2x)(1+2x)A.1個B.2個C.3個D.
2024-11-19 11:08
【摘要】二次函數(shù)的應(yīng)用【教學(xué)內(nèi)容】二次函數(shù)的應(yīng)用(二)【教學(xué)目標(biāo)】知識與技能正確分析和把握利潤最大化問題的數(shù)量關(guān)系,從而得到函數(shù)關(guān)系,再求最值.過程與方法學(xué)會如何建立數(shù)學(xué)模型解決最優(yōu)化問題,并運用二次函數(shù)的知識求出實際問題的最大值、最小值.情感、態(tài)度與價值觀通過二次函數(shù)解決身邊問題,體會數(shù)學(xué)知識應(yīng)用的價值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)
2024-11-23 15:45
【摘要】二次函數(shù)的應(yīng)用(二)一、選擇題1.如圖2-109所示的拋物線的解析式是()A.y=x2-x+2B.y=-x2-x+2C.y=x2+x+2D.y=-x2+x+22.(2021?佛山,第6題3分)下列函數(shù)中,當(dāng)x>0時,y值隨x值的增大而減小的是(
2024-12-02 19:22
【摘要】二次函數(shù)的圖象與性質(zhì)第一課時檢測(時間45分鐘滿分100分)一.選擇題(每小題6分,共48分)1.(2017秋?瑤海區(qū)期中)拋物線y=x2,當(dāng)﹣1≤x≤3時,y的取值范圍是()A.﹣1≤y≤9B.0≤y≤9C.1≤y≤9D.﹣1≤y≤32.(201
2024-11-19 16:26
【摘要】二次函數(shù)的應(yīng)用(一)一、選擇題:1.二次函數(shù)y=ax2+bx+c的圖象如圖2-90所示,則下列判斷錯誤的是()A.a(chǎn)>0B.c<0D.y隨x的增大而減小2.關(guān)于二次函數(shù)y=x2+4x-7的最大(小)值敘述正確的是()A.當(dāng)x
【摘要】讀書無疑者,須教有疑,有疑者,卻要無疑,到這里方是長進。
2024-12-11 22:58
【摘要】課題:二次函數(shù)的應(yīng)用課型:新授課年級:九年級教學(xué)目標(biāo):1.經(jīng)歷探究長方形和窗戶透光最大面積問題的過程,進一步獲得利用數(shù)學(xué)方法解決實際問題的經(jīng)驗,并進一步感受數(shù)學(xué)模型思想和數(shù)學(xué)知識的應(yīng)用價值.2·1·c·n·j·y2.能夠分析和表示不同背景下實際問題中變量之間的
2024-12-13 12:44
【摘要】二次函數(shù)與一元二次方程第一課時檢測(時間45分鐘滿分100分)一.選擇題(每小題5分,共50分)1.(2017秋?上杭縣期中)已知函數(shù)y=(k﹣3)x2+2x+1的圖象與x軸有交點,則k的取值范圍是()A.k≤4且k≠3B.k<4且k≠3C.k<
2024-11-18 23:16
【摘要】北師大版九年級下冊數(shù)學(xué)情境導(dǎo)入某超市有一種商品,進價為2元,據(jù)市場調(diào)查,銷售單價是13元時,平均每天銷售量是50件,而銷售價每降低1元,平均每天就可以多售出10件.若設(shè)降價后售價為x元,每天利潤為y元,則y與x之間的函數(shù)關(guān)系是怎樣的?本節(jié)目標(biāo)T恤衫銷售過程中最大利潤等問題的過程,體會二次函數(shù)是一類最優(yōu)化問題的數(shù)學(xué)模型
2025-06-15 01:19
【摘要】北師大版九年級下冊數(shù)學(xué)20)yaxbxca????二次函數(shù)(24,)4acba?b頂點坐標(biāo)為(-2a244acba?①當(dāng)a0時,y有最小值=②當(dāng)a0時,y有最大值=244acba?二次函數(shù)的最值求法情境導(dǎo)入
2025-06-20 13:01
【摘要】二次函數(shù)【知識點一:二次函數(shù)的定義】1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù).這里需要強調(diào):和一元二次方程類似,二次項系數(shù),而可以為零.2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項.【典型例題】1、下列函數(shù)中是二次函數(shù)的有()①y=x+;
2025-04-19 22:29
【摘要】2.二次函數(shù)y=ax2+bx+c的圖象是一條,它的對稱軸是,頂點坐標(biāo)是.當(dāng)a0時,拋物線開口向,有最點,函數(shù)有最值,是;當(dāng)a0時,拋物線開口向
2024-11-21 22:41
【摘要】.44222abacabxay??????????二次函數(shù)y=ax2+bx+c的對稱軸、頂點坐標(biāo)分別是什么?如何確定最值?你有幾種方法?復(fù)習(xí)回顧24,.24bacbaa????????對稱軸:直線.2bxa??頂點坐標(biāo):最值:
2024-11-21 08:35