【摘要】一、復習與引入f(x)在x0處連續(xù)時,判別f(x0)是極大(小)值的方法是:①如果在x0附近的左側(cè)右側(cè),那么,f(x0)是極大值;②如果在x0附近的左側(cè)右側(cè),那么,f(x0)是極小值.
2024-11-16 19:05
【摘要】第三節(jié)函數(shù)的值域與最值基礎梳理1.函數(shù)的最值一般地,設函數(shù)y=f(x)的定義域為A,(1)如果存在x0∈A,使得對于任意x∈A,都有________,那么稱f(x0)為y=f(x)的最大值,記為________.(2)如果存在x0∈A,使得對于任意x∈A,都有________,那么稱f(x0)為y=f(x)
2024-11-16 16:45
【摘要】三角函數(shù)的最值問題新沂市第一中學高三數(shù)學組授課人:安勇重點:讓學生能運用三角函數(shù)概念、圖象、性質(zhì)、同角三角函數(shù)的基本關系式、和差角公式等求有關最值問題;掌握求最值常見思想方法。難點:利用三角函數(shù)的性質(zhì)求有關最值。下頁=sinx,y=cosx的值域是————。=asinx+
2024-11-16 16:46
【摘要】求直線的方程:待定系數(shù)法例L過點P(-5,-4),且與兩坐標軸圍成三角形面積為5,求直線L的方程。練習:直線L的斜率為-2,在X軸、Y軸上的截距之和為12,求直線L的方程。直線方程的范圍與最值例2、某房地產(chǎn)公司要荒地ABCDE上劃出一塊長方形地面(不改變方位)進行開發(fā),問如何設計才能使開發(fā)面
2024-11-13 00:53
【摘要】例1、已知直線y=x和兩定點A(1,1),B(2,2)在此直線上取一點P,使|PA|2+|PB|2最小,求點P的坐標。21解:設P(x,y),則xy21?又|PA|2+|PB|2=(x-1)2+(y-1)2+(x-2)2+(y-2)21019)109
2024-11-13 03:30
【摘要】2020屆高考數(shù)學復習強化雙基系列課件13《函數(shù)的最值》知識網(wǎng)絡最值求解方法最值問題常用解法最值綜合問題最值應用問題“恒成立”問題“存在”問題:配方法,判別式法,代換法,不等式法,單調(diào)性法,數(shù)形結合法,三角函數(shù)有界法,反函數(shù)法。復習導引,
2024-11-15 02:54
【摘要】二次函數(shù)的最值上節(jié)課,我們大膽假設存在一個新數(shù)i(叫做虛數(shù)單位).規(guī)定:①21i??;②i可以和實數(shù)進行運算,且原有的運算律仍成立.1.復數(shù)(,)zabiabR???a─實部
2024-09-05 13:16
【摘要】精銳教育學科教師輔導講義學員編號:年級:高二課時數(shù):學員姓名:張欣蕾輔導科目:數(shù)學學科教師:李欣授課類型T導數(shù)與函數(shù)極值與最值CT
2025-05-19 08:26
【摘要】?1.判斷正誤:?(1)若函數(shù)f(x)在區(qū)間(a,b)和(c,d)上均為增函數(shù),則函數(shù)f(x)在區(qū)間(a,b)∪(c,d)上也是增函數(shù).?(2)若函數(shù)f(x)和g(x)在各自的定義域上均為增函數(shù),則f(x)+g(x)在它們定義域的交集(非空)上是增函數(shù).?[答案](1)×(
2024-11-14 12:26
【摘要】廣東省深圳市第三高級中學數(shù)學必修一《函數(shù)的最大(小)值》課件一、問題導入的,在減區(qū)間上時隨著自變量的增大而降低的,那么函數(shù)的圖象有最高點和最低點嗎?2.函數(shù)圖象上升與下降反映了函數(shù)的單調(diào)性,如果函數(shù)的圖象存在最高點或最低點,它又反映了函數(shù)的什么性質(zhì)?二、探索新知——最大值觀察下列兩個函數(shù)圖象:思考1:這兩
2024-11-17 12:03
【摘要】圓錐曲線中的最值問題制作:黃石市實驗高中成冬英想一想OyxOyx換元法判別式法Q(3,4)P利用幾何意義:看成PQ的斜率Oyx變題OBAyxCDOyx
2024-11-13 23:29
【摘要】(1)配方法(2)換元法(3)圖象法(4)單調(diào)性法(5)不等式法(6)導數(shù)法(7)數(shù)形結合法(8)判別式法(9)三角函數(shù)有界性一、求函數(shù)最值的常用方法:最值問題是數(shù)學的重要內(nèi)容之一,是解決數(shù)學應用的基礎。二、典型例題例1:對每個實數(shù)x,設f(x)是y=2
2024-11-11 00:41
【摘要】二次函數(shù)的最值問題練習:已知函數(shù)y=x2+2x+2,xD,求此函數(shù)在下列各D中的最值:①[-3,-2];②[-2,1];③[0,1];④[-3,]顯示文本對象顯示點隱藏函數(shù)圖像顯示對象顯示文本對象顯示對象顯示點練習:已知函數(shù)y=x2+2x+2,xD,求此
2024-11-16 01:26
【摘要】???xyo(1)配方。(2)畫圖象。(3)根據(jù)圖象確定函數(shù)最值。(看所給范圍內(nèi)的最高點和最低點)122(a0)xxxyaxbxc??????求給定范圍內(nèi),二次函數(shù)最值的步驟:??2324yx???試判斷函數(shù)
2024-11-25 23:43
【摘要】1北師大版高中數(shù)學選修2-2第三章《導數(shù)應用》河北隆堯第一中學2一、教學目標:1、知識與技能:會求函數(shù)的最大值與最小值。2、過程與方法:通過具體實例的分析,會利用導數(shù)求函數(shù)的最值。3、情感、態(tài)度與價值觀:讓學生感悟由具體到抽象,由特殊到一般的思想方法。二、教學重點:函數(shù)最大值與最小值的求法教學難點:函數(shù)最
2024-08-16 06:05