【摘要】新課標人教版課件系列《高中數(shù)學》必修4《向量的幾何表示和相等向量與共線向量》教學目標?掌握向量的表示方法、相等向量、共線向量等概念;并會區(qū)分平行向量、相等向量和共線向量.?通過對向量的學習,使學生初步認識現(xiàn)實生活中的向量和數(shù)量的本質(zhì)區(qū)別.?通過學生對向量與數(shù)量的識別能力的訓練,培養(yǎng)學生認識客觀
2024-11-16 19:04
【摘要】主講老師:共線向量復習引入(1)數(shù)量與向量有何區(qū)別?(2)如何表示向量?(3)有向線段和線段有何區(qū)別和聯(lián)系?分別可以表示向量的什么?(4)長度為零的向量叫什么向量?長度為1的向量叫什么向量?講授新課(5)滿足什么條件的兩個向量是相同向量?單位向量是相同向量嗎?
2024-11-13 01:24
【摘要】共線向量與共面向量一、共線向量:零向量與任意向量共線.:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作ba//:對空間任意兩個向量的充要條件是存在實數(shù)使baobba//),(,?ba??
2024-08-05 00:27
【摘要】共線向量與共面向量ABCDDCBA)()1(''CCBCABxAC???ADyABxAAAE???')2(練習在立方體AC1中,點E是面A’C’的中心,求下列各式中的x,y.EABCDDCBA)()1(''
2024-08-05 15:38
2024-08-04 06:25
【摘要】淮北礦業(yè)集團公司中學紀迎春一.復習提問:...二.新課:定理:對于空間任意兩個向量a、b(b=0),a//b的充要條件是存在實數(shù)λ使a=λb.推論:如果l為經(jīng)過已知點A且平行于已知非零向量a的直線,那么對任一點O,點P在直線l上的充要條件是存在實數(shù)t,滿足等式
2024-08-05 00:32
2024-08-16 18:38
【摘要】§相等向量與共線向量【學習目標、細解考綱】1理解相等向量與共線向量的概念2由向量相等的定義,理解平行向量與共線向量是等價的。【知識梳理、雙基再現(xiàn)】1相等向量是_________________________向量a與b相等,記作_______________。任意兩個相等的非零向量,都可用一條有向線段來表示,并且
2024-12-06 08:37
【摘要】平面向量的坐標運算a-b),(2211baba???),(2211baba???a+b12(,)aaa????1212xxabyy???????一一對應一一對應點AOA向量(,)xy坐標1122+eeaaa?12(,)aaa?1
2024-07-31 05:00
【摘要】向量的幾何表示在上一節(jié)課中,我們學到了一個新的概念——向量,它是一個有大小和有方向的量,那么在數(shù)學中,我們該如何表示呢?以及它的相關概念是如何定義的呢?本課將重點介紹向量的表示方法與相關概念.表示方法向量的模A(起點)B(終點)a向量的大小——長度稱為向量的模,記作.
2024-11-06 18:44
【摘要】1、平面向量的坐標表示與平面向量分解定理的關系。2、平面向量的坐標是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2024-11-16 17:25
【摘要】一、向量的直角坐標運算則設),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???ababab112233(,,)???ababab123(,,),()??
2024-11-13 01:17
【摘要】一、向量的直角坐標運算二、距離與夾角(1)向量的長度(模)公式注意:此公式的幾何意義是表示長方體的對角線的長度。在空間直角坐標系中,已知、,則(2)空間兩點間的距離公式注意:(1)當時,同向;(2)當
2024-11-16 16:42
【摘要】共線向量與共面向量廣東河源中學王利強與平面一樣,如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量.a(chǎn)平行于b記作a∥b.對空間任意兩個向量a、b(b≠0),a∥b的充要條件是存在實數(shù)λ使a=λb.a(chǎn)?b?a?共線向量定理推論
2024-08-27 02:01
【摘要】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所