【摘要】排列組合常見題型及解題策略排列組合問題是高考的必考題,它聯(lián)系實際生動有趣,但題型多樣,思路靈活,不易掌握,實踐證明,掌握題型和解題方法,識別模式,熟練運用,是解決排列組合應(yīng)用題的有效途徑;下面就談一談排列組合應(yīng)用題的解題策略.一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利
2025-08-08 18:14
【摘要】排列組合常見題型及解題策略四川南溪縣第一中學(xué)校王信釧湯艷麗排列組合問題是高考的必考題,它聯(lián)系實際生動有趣,但題型多樣,思路靈活,不易掌握,實踐證明,掌握題型和解題方法,識別模式,熟練運用,是解決排列組合應(yīng)用題的有效途徑;下面就談一談排列組合應(yīng)用題的解題策略.一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元
2025-01-17 00:49
【摘要】1排列組合常見題型及解題策略四川南溪縣第一中學(xué)校王信釧湯艷麗排列組合問題是高考的必考題,它聯(lián)系實際生動有趣,但題型多樣,思路靈活,不易掌握,實踐證明,掌握題型和解題方法,識別模式,熟練運用,是解決排列組合應(yīng)用題的有效途徑;下面就談一談排列組合應(yīng)用題的解題策略.一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù)
2025-01-09 05:38
【摘要】可重復(fù)的排列求冪法相鄰問題捆綁法相離問題插空法元素分析法(位置分析法)多排問題單排法定序問題縮倍法(等幾率法)標(biāo)號排位問題(不配對問題)不同元素的分配問題(先分堆再分配)相同元素的分配問題隔板法:多面手問題(分類法---選定標(biāo)準(zhǔn))走樓梯問題(分類法與插空法相結(jié)合)排數(shù)問題(注意數(shù)字“0”)高☆考♂資♀源€網(wǎng)☆染色問題“至
2025-08-08 06:28
【摘要】小學(xué)排列組合常見題型及解題策略一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個底數(shù),哪個是指數(shù)【例1】(1)有4名學(xué)生報名參加數(shù)學(xué)、物理、化學(xué)競賽,每人限報一科,有多少種不同的報名方法?(2)有4名學(xué)生參加爭
2025-03-28 02:36
【摘要】編號: 時間:2021年x月x日 海納百川 頁碼:第5頁共5頁 高考數(shù)學(xué)必考排列組合題型及解題方法(上)_ 排列組合問題聯(lián)系實際生動有趣,但題型多樣,思路靈活,因此解決排列組合問題,...
2025-04-04 12:02
【摘要】名稱內(nèi)容分類原理分步原理定義相同點不同點兩個原理的區(qū)別與聯(lián)系:做一件事或完成一項工作的方法數(shù)直接(分類)完成間接(分步驟)完成做一件事,完成它可以有n類辦法,第一類辦法中有m1種不同的方法,第二類辦法中有m2種不同的方法…,第n類
2025-03-07 11:20
【摘要】排列組合應(yīng)用題解法綜述計數(shù)問題中排列組合問題是最常見的,由于其解法往往是構(gòu)造性的,因此方法靈活多樣,不同解法導(dǎo)致問題難易變化也較大,而且解題過程出現(xiàn)“重復(fù)”和“遺漏”的錯誤較難自檢發(fā)現(xiàn)。因而對這類問題歸納總結(jié),并把握一些常見解題模型是必要的?;驹斫M合排列排列數(shù)公式組合數(shù)
2024-08-26 22:10
【摘要】解排列組合問題的常用策略名稱內(nèi)容分類原理分步原理定義相同點不同點兩個原理的區(qū)別與聯(lián)系:做一件事或完成一項工作的方法數(shù)直接(分類)完成間接(分步驟)完成做一件事,完成它可以有n類辦法,第一類辦法中有m1種不同的方法,第二類辦法中有m2種不同的方法…,第n類辦法中有mn種不同的方法,那么完
2025-01-27 20:06
【摘要】解排列組合的問題一般的思考過程如下:元素放進(jìn)位置(1)弄清楚要做什么事.(2)怎么做才能完要做的事.(熟悉兩個計數(shù)原理)即采取分步還是分類,或分步分類同時進(jìn)行。(3)確定每一類或每一步是有序(排列)還是無序(組合)問題。元素總數(shù)多少,取多少個元素。(4)掌握一些常用的解題策略。常用的解題策略
2024-08-26 23:54
【摘要】排列組合應(yīng)用題的解題策略河北徐水綜合高中張占江郵編072550@排列組合問題是高考的必考題,它聯(lián)系實際生動有趣,但題型多樣,思路靈活,不易掌握,實踐證明,掌握題型和解題方法,識別模式,熟練運用,是解決排列組合應(yīng)用題的有效途徑;下面就談一談排列組合應(yīng)用題的解題策略。1、相鄰問題捆綁法。題目中規(guī)定相鄰的幾個元素捆綁成一個組,當(dāng)作一個大元素參與排列。例1:五
2025-06-10 19:47
【摘要】例1,7名學(xué)生站成一排,甲已必須站在一起,有多少種方法?捆綁法:要求某幾個元素必須排在一起的問題,可以用捆綁法來解決問題。即將需要相鄰的元素合并為一個元素,再與其他元素一起作排列,同時要注意合并元素內(nèi)部也可以做排列。一般地:n個人站成一排,其中某m個人相鄰,可用“捆綁法”解決,共有種排法插入法:對
2024-11-13 13:22
【摘要】排列組合問題經(jīng)典題型與通用方法:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當(dāng)作一個大元素參與排列.,如果必須相鄰且在的右邊,則不同的排法有()A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問題,可先把無位置要求的幾個元素全排列,再把規(guī)定的相離的幾個元素插入上述幾個元素的空位和兩端.,如果甲乙兩個必須不相鄰,那么不同的排法種
2025-03-28 02:37
【摘要】排列組合題型總結(jié)一.直接法1.特殊元素法例1用1,2,3,4,5,6這6個數(shù)字組成無重復(fù)的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(1)數(shù)字1不排在個位和千位(2)數(shù)字1不在個位,數(shù)字6不在千位。二.間接法當(dāng)直接法求解類別比較大時,應(yīng)采用間接法。例2有五張卡片,它的正反面分別寫0與1,2與3,4與
2025-03-29 00:39
【摘要】排列、組合的應(yīng)用問題高考要求:,并能用它們分析和解決一些簡單的應(yīng)用問題。,掌握排列數(shù)公式。,掌握組合數(shù)計算公式及組合數(shù)的性質(zhì)。3名男生,4名女生,在下列不同要求下求不同的排列方法總數(shù).(1)甲不在排頭,乙不在排尾.(2)男、女生各不相鄰.(3)甲站中間,乙、丙必須相鄰。(4)甲與乙、丙二人
2024-11-13 03:17