【摘要】梯形中常見輔助線例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長兩腰,將梯形轉(zhuǎn)化成三角形.EDBCADBCAF平移一腰,梯形轉(zhuǎn)化成:平行四邊形和三角形.DBCAF2
2024-11-15 22:56
【摘要】2020年4月平移腰作高補為三角形平移對角線其他方法轉(zhuǎn)化為三角形或平行四邊形等在梯形中常用的作輔助線方法開動腦筋靈活應(yīng)用ABCDEFAB
2024-11-11 01:00
2024-08-15 16:52
【摘要】平移腰作高補為三角形平移對角線其他方法轉(zhuǎn)化為三角形或平行四邊形等在梯形中常用的作輔助線方法開動腦筋A(yù)BCDEEFABCDABCDO平
2024-11-16 02:37
【摘要】梯形常用輔助線的做法常見的梯形輔助線基本圖形如下:,把梯形的腰、兩底角等轉(zhuǎn)移到一個三角形中,同時還得到平行四邊形.【例1】已知:如圖,在梯形ABCD中,.求證:.分析:平移一腰BC到DE,將題中已知條件轉(zhuǎn)化在同一等腰三角形中解決,即AB=2CD.證明:過D作,交AB于E. ∵AB平行于CD,且,
2025-06-25 15:18
【摘要】第1頁共3頁八年級下冊數(shù)學(xué)梯形的輔助線基礎(chǔ)題人教版一、單選題(共7道,每道15分)ABCD,AD∥BC,AD=1,BC=4,∠B=70°,∠C=40°,則CD的長為(),梯形ABCD中,AD∥BC,E、F分別是AD、BC的
2024-08-24 22:33
【摘要】中點常見的輔助線中點經(jīng)常所在的三角形:全等三角形等腰三角形:三線合一直角三角形:斜邊上的中線、三角形的中位線:一、一個中點常見的輔助線(1)利用中點構(gòu)建全等形:倍長中線至二倍,構(gòu)建全等三角形(2)有中點聯(lián)想直角三角形的斜邊上的中線(3)由中點聯(lián)想到等腰三角形的“三線合一”1、在△ABC中,AD是BC邊上的中線,若AB=2,AC=4,則AD的取值范圍是_
2025-03-25 11:22
【摘要】平移腰作高補為三角形平移對角線其他方法轉(zhuǎn)化為三角形或平行四邊形等在梯形中常用的作輔助線方法開動腦筋靈活應(yīng)用ABCDEFABCDABCD
2024-12-11 16:27
【摘要】(1)“取長補短法“證線段的和差關(guān)系1、如圖,AC∥BD,EA,EB分別平分∠CAB,∠DBA,CD過點E,求證;AB=AC+BD_E_C_D_B_A2:如圖,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于點D,CE垂直于BD,交BD的延長線于點E。求證:BD=2CE。
2025-04-07 03:26
【摘要】常見的輔助線的作法“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題:倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形:(1)可以自角平分線上的某一點向角的兩邊作垂線,(2)可以在角平分線上的一點作該角平分線的垂線與角的兩邊相交,形成一對全等三角形。(3)可以在該角的兩邊上,距離角的頂點相等長度的位置上截取二點,然后從這兩點再向角平分線上的某點作邊線,構(gòu)造一
2025-03-27 02:14
【摘要】第1頁共4頁八年級數(shù)學(xué)下冊同步拔高(綜合+強化)人教版利用幾何特征解決梯形輔助線問題一、單選題(共10道,每道10分)1.(2020金華)如圖,在等腰梯形ABCD中,AB∥CD,對角線AC平分∠BAD,∠B=60°,CD=2cm,則梯形ABCD的面積為()cm2.A
2024-08-15 09:28
【摘要】八年級(上冊)數(shù)學(xué)第四章四邊形性質(zhì)探索第五節(jié)梯形(第一課時)定義:一組對邊平行而另一組對邊不平行的四邊形叫做梯形。平行的兩邊叫做梯形的底,不平行的兩邊叫做梯形的腰,夾在兩底之間的垂線段叫做梯形的高。底底腰高腰議一議:什么是梯形?做一做(1)你能在一
2024-11-13 21:04
【摘要】我的昨天,你可以鄙視;我的今天,你不可輕視;我的明天,你必須重視人的一生只有三天:昨天、今天、明天因為,我反思昨天、把握今天、描繪明天;因為,我自信、我努力。一、梯形的定義和分類:四邊形一組對邊平行另一組對邊不平行梯形等腰梯形直角梯形二、等腰梯形的性質(zhì):2、等腰梯形的兩條對角
2024-11-14 04:35
【摘要】梯形中常見輔助線課件制作:王從亮課件審核:田學(xué)銀例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長兩腰,將梯形轉(zhuǎn)化成三角形.EDBCA平移一腰,梯形轉(zhuǎn)化成:平行四邊和三角形.DBCA
2024-11-14 03:18