【摘要】常見的輔助線的作法“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題:倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形:(1)可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,(2)可以在角平分線上的一點(diǎn)作該角平分線的垂線與角的兩邊相交,形成一對(duì)全等三角形。(3)可以在該角的兩邊上,距離角的頂點(diǎn)相等長(zhǎng)度的位置上截取二點(diǎn),然后從這兩點(diǎn)再向角平分線上的某點(diǎn)作邊線,構(gòu)造一
2025-03-27 02:14
【摘要】中點(diǎn)常見的輔助線中點(diǎn)經(jīng)常所在的三角形:全等三角形等腰三角形:三線合一直角三角形:斜邊上的中線、三角形的中位線:一、一個(gè)中點(diǎn)常見的輔助線(1)利用中點(diǎn)構(gòu)建全等形:倍長(zhǎng)中線至二倍,構(gòu)建全等三角形(2)有中點(diǎn)聯(lián)想直角三角形的斜邊上的中線(3)由中點(diǎn)聯(lián)想到等腰三角形的“三線合一”1、在△ABC中,AD是BC邊上的中線,若AB=2,AC=4,則AD的取值范圍是_
2025-03-25 11:22
【摘要】2020年4月平移腰作高補(bǔ)為三角形平移對(duì)角線其他方法轉(zhuǎn)化為三角形或平行四邊形等在梯形中常用的作輔助線方法開動(dòng)腦筋靈活應(yīng)用ABCDEFAB
2024-11-11 01:00
【摘要】1梯形輔助線專題訓(xùn)練題()班級(jí)姓名常見的梯形輔助線規(guī)律口訣為:梯形問題巧轉(zhuǎn)化,變?yōu)椤骱汀?要想盡快解決好,添加輔助線最重要;平移兩腰作出高,延長(zhǎng)兩腰也是關(guān)鍵;記著平移對(duì)角線,上下底和差就出現(xiàn);如果出現(xiàn)腰中點(diǎn),就把中位線細(xì)心連;上述方法不奏效,
2025-01-09 04:25
【摘要】梯形輔助線專題訓(xùn)練題()班級(jí)姓名常見的梯形輔助線規(guī)律口訣為:梯形問題巧轉(zhuǎn)化,變?yōu)椤骱汀?要想盡快解決好,添加輔助線最重要;平移兩腰作出高,延長(zhǎng)兩腰也是關(guān)鍵;記著平移對(duì)角線,上下底和差就出現(xiàn);如果出現(xiàn)腰中點(diǎn),就把中位線細(xì)心連;上述方法不奏效,過中點(diǎn)旋轉(zhuǎn)成全等;靈活添加輔助線,幫你度過梯形難關(guān);想要易解梯
2025-01-17 16:15
【摘要】專業(yè)資料分享【2013年中考攻略】專題7:幾何輔助線(圖)作法探討一些幾何題的證明或求解,由原圖形分析探究,有時(shí)顯得十分復(fù)雜,若通過適當(dāng)?shù)淖儞Q,即添加適當(dāng)?shù)妮o助線(圖),將原圖形轉(zhuǎn)換成一個(gè)完整的、特殊的、簡(jiǎn)單的新圖形,則能使原問題的本質(zhì)得到充分的顯示,通過對(duì)新圖形的分析,原問題順利獲解
2025-05-19 02:07
【摘要】例1:已知如圖1-1:D、E為△ABC內(nèi)兩點(diǎn),求證:AB+AC>BD+DE+CE.例如:如圖2-1:已知D為△ABC內(nèi)的任一點(diǎn),求證:∠BDC>∠BAC。分析:因?yàn)椤螧DC與∠BAC不在同一個(gè)三角形中,沒有直接的聯(lián)系,可適當(dāng)添加輔助線構(gòu)造新的三角形,使∠BDC處于在外角的位置,∠BAC處于在內(nèi)角的位置;例如:如圖3-1:已知A
2025-07-26 03:37
【摘要】......初中數(shù)學(xué)輔助線的添加淺談人們從來就是用自己的聰明才智創(chuàng)造條件解決問題的,當(dāng)問題的條件不夠時(shí),添加輔助線構(gòu)成新圖形,形成新關(guān)系,使分散的條件集中,建立已知與未知的橋梁,把問題轉(zhuǎn)化為自己能解決的問題,這是解決問題常用
2024-08-14 00:57
【摘要】梯形中常見輔助線例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長(zhǎng)兩腰,將梯形轉(zhuǎn)化成三角形.EDBCADBCAF平移一腰,梯形轉(zhuǎn)化成:平行四邊形和三角形.DBCAF2
2024-11-15 22:56
【摘要】第1頁共3頁八年級(jí)下冊(cè)數(shù)學(xué)梯形的輔助線基礎(chǔ)題人教版一、單選題(共7道,每道15分)ABCD,AD∥BC,AD=1,BC=4,∠B=70°,∠C=40°,則CD的長(zhǎng)為(),梯形ABCD中,AD∥BC,E、F分別是AD、BC的
2024-08-24 22:33
【摘要】八年級(jí)幾何證明專題訓(xùn)練1.如圖,已知△EAB≌△DCE,AB,EC分別是兩個(gè)三角形的最長(zhǎng)邊,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度數(shù).2.如圖,點(diǎn)E、A、B、F在同一條直線上,AD與BC交于點(diǎn)O,已知∠CAE=∠DBF,AC=:∠C=∠D,OP平分∠AOB,且OA
【摘要】三角形中作輔助線的常用方法舉例一、延長(zhǎng)已知邊構(gòu)造三角形:例如:如圖7-1:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求證:AD=BC分析:欲證AD=BC,先證分別含有AD,BC的三角形全等,有幾種方案:△ADC與△BCD,△AOD與△BOC,△ABD與△BAC,但根據(jù)現(xiàn)有條件,均無法證全等,差角的相等,因此可設(shè)法作出新的角,且讓此角作為兩個(gè)三角形的公共角。證明:分別
2024-08-14 00:50
【摘要】幾何輔助線練習(xí)之旋轉(zhuǎn)類旋轉(zhuǎn)技巧同步訓(xùn)練題
2025-06-27 15:21
【摘要】專業(yè)資料分享三角形中作輔助線的常用方法舉例一、延長(zhǎng)已知邊構(gòu)造三角形:例如:如圖7-1:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求證:AD=BC分析:欲證AD=BC,先證分別含有AD,BC的三角形全等,有幾種方案:△ADC與△BCD,△AOD與△BOC,△ABD與
2024-08-14 01:15
【摘要】(1)“取長(zhǎng)補(bǔ)短法“證線段的和差關(guān)系1、如圖,AC∥BD,EA,EB分別平分∠CAB,∠DBA,CD過點(diǎn)E,求證;AB=AC+BD_E_C_D_B_A2:如圖,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于點(diǎn)D,CE垂直于BD,交BD的延長(zhǎng)線于點(diǎn)E。求證:BD=2CE。
2025-04-07 03:26