【摘要】我的昨天,你可以鄙視;我的今天,你不可輕視;我的明天,你必須重視人的一生只有三天:昨天、今天、明天因為,我反思昨天、把握今天、描繪明天;因為,我自信、我努力。一、梯形的定義和分類:四邊形一組對邊平行另一組對邊不平行梯形等腰梯形直角梯形二、等腰梯形的性質(zhì):2、等腰梯形的兩條對角
2024-11-30 04:35
【摘要】梯形中常見輔助線課件制作:王從亮課件審核:田學(xué)銀例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長兩腰,將梯形轉(zhuǎn)化成三角形.EDBCA平移一腰,梯形轉(zhuǎn)化成:平行四邊和三角形.DBCA
2024-11-30 03:18
2024-12-01 22:56
【摘要】梯形是我們小學(xué)時就已經(jīng)熟悉的幾何圖形,你能在生活中找到相關(guān)的例子嗎?梯形和平行四邊形有什么異同?梯形的定義:一組對邊平行而另一組對邊不平行的四邊形叫梯形。平行的兩邊是梯形的底(通常較短的底叫梯形的上底,較長的底叫它的下底),不平行的兩邊叫梯形的腰,兩底的公垂線段叫梯形的高。高下底
2024-11-26 20:34
【摘要】梯形中常見輔助線例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長兩腰,將梯形轉(zhuǎn)化成三角形.EDBCA平移一腰,梯形轉(zhuǎn)化成:平行四邊和三角形.DBCAF2.如圖,在梯形ABCD中,A
2024-11-18 23:14
【摘要】梯形中的常見輔助線一、平移1、平移一腰:例1.如圖所示,在直角梯形ABCD中,∠A=90°,AB∥DC,AD=15,AB=16,BC=17.求CD的長.例2如圖,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范圍。2、平移兩腰:例3如圖,在梯形ABCD中,AD//BC,∠B+∠C=90
2025-07-07 16:00
【摘要】梯形的輔助線講學(xué)稿(2課時)執(zhí)筆:許運山審定:道橋中學(xué)數(shù)學(xué)組學(xué)習(xí)目標:會作梯形的輔助線,并運用它解決梯形的問題學(xué)習(xí)重點:梯形的輔助線的作法.學(xué)習(xí)難點:作梯形輔助線解決梯形問題.學(xué)習(xí)過程:一、學(xué)前準備:(5分鐘)、等腰梯形、直角梯形?等腰梯形有什么性質(zhì)??有什么性質(zhì)?二、合作探究:(30分鐘)問題一:平移一腰,將兩腰轉(zhuǎn)化在一個三角形中,將兩底角轉(zhuǎn)
2024-09-08 17:18
【摘要】同學(xué)們好梯形的常用輔助線的研究梯形的中位線的研究平移腰作高補為三角形平移對角線其他方法轉(zhuǎn)化為三角形或平行四邊形等在梯形中常用的作輔助線方法開動腦筋靈活應(yīng)用AB
2025-01-27 14:15
【摘要】?課前熱身1、下列說法中,正確的是()....D2:3:3:2,則這個四邊形為(),若內(nèi)角的度數(shù)比為3:3:5:1,則四邊形為()等腰梯形直角梯形?:–梯形:一組對邊平行而另一組對邊部平行的四邊形叫做梯形
2024-08-23 14:17
【摘要】專業(yè)資料分享常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自
2025-05-31 02:07
【摘要】第1頁共3頁八年級數(shù)學(xué)巧用輔助線證三角形全等專題練習(xí)試卷簡介:通過典型例題給學(xué)生介紹兩種三角形全等中常用輔助線的做法:備長中線法和截長補短法。通過本例題,使學(xué)生能夠掌握這兩種解題方法。學(xué)習(xí)建議:全等三角形是歷年中考數(shù)學(xué)必考內(nèi)容,這類問題題型比較多樣,很多問題都會考查輔助線的做法,這些例題就是根據(jù)同學(xué)們學(xué)習(xí)中的常見問題
2024-09-09 21:57
2024-08-23 09:25
2025-01-27 13:57
【摘要】1梯形輔助線專題訓(xùn)練題()班級姓名常見的梯形輔助線規(guī)律口訣為:梯形問題巧轉(zhuǎn)化,變?yōu)椤骱汀?要想盡快解決好,添加輔助線最重要;平移兩腰作出高,延長兩腰也是關(guān)鍵;記著平移對角線,上下底和差就出現(xiàn);如果出現(xiàn)腰中點,就把中位線細心連;上述方法不奏效,
2025-01-21 04:25