【摘要】梯形中常見(jiàn)輔助線例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長(zhǎng)兩腰,將梯形轉(zhuǎn)化成三角形.EDBCA平移一腰,梯形轉(zhuǎn)化成:平行四邊和三角形.DBCAF2.如圖,在梯形ABCD中,A
2024-11-18 23:14
【摘要】幾何輔助線(圖)作法探討一些幾何題的證明或求解,由原圖形分析探究,有時(shí)顯得十分復(fù)雜,若通過(guò)適當(dāng)?shù)淖儞Q,即添加適當(dāng)?shù)妮o助線(圖),將原圖形轉(zhuǎn)換成一個(gè)完整的、特殊的、簡(jiǎn)單的新圖形,則能使原問(wèn)題的本質(zhì)得到充分的顯示,通過(guò)對(duì)新圖形的分析,原問(wèn)題順利獲解。有許多初中幾何常見(jiàn)輔助線作法歌訣,下面這一套是很好的:人說(shuō)幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找
2025-04-19 03:02
【摘要】同學(xué)們好梯形的常用輔助線的研究梯形的中位線的研究平移腰作高補(bǔ)為三角形平移對(duì)角線其他方法轉(zhuǎn)化為三角形或平行四邊形等在梯形中常用的作輔助線方法開(kāi)動(dòng)腦筋靈活應(yīng)用AB
2025-01-27 13:57
【摘要】2020年4月平移腰作高補(bǔ)為三角形平移對(duì)角線其他方法轉(zhuǎn)化為三角形或平行四邊形等在梯形中常用的作輔助線方法開(kāi)動(dòng)腦筋靈活應(yīng)用ABCDEFAB
2024-11-27 01:00
【摘要】梯形中常見(jiàn)輔助線例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長(zhǎng)兩腰,將梯形轉(zhuǎn)化成三角形.EDBCADBCAF平移一腰,梯形轉(zhuǎn)化成:平行四邊形和三角形.DBCAF2
2024-12-01 22:56
【摘要】第1頁(yè)共3頁(yè)八年級(jí)下冊(cè)數(shù)學(xué)梯形的輔助線基礎(chǔ)題人教版一、單選題(共7道,每道15分)ABCD,AD∥BC,AD=1,BC=4,∠B=70°,∠C=40°,則CD的長(zhǎng)為(),梯形ABCD中,AD∥BC,E、F分別是AD、BC的
2024-09-09 22:33
【摘要】無(wú)為三中八年級(jí)數(shù)學(xué)專題學(xué)習(xí)幾何證明中常見(jiàn)的“添輔助線”方法(2022年安徽)如圖,AD是△ABC的邊BC上的高,由下列條件中的某一個(gè)就能推出△ABC是等腰三角形的是_________________。(把所有正確答案的序號(hào)都填寫在橫線上)①∠BA
2025-05-21 12:02
【摘要】專業(yè)資料分享【2013年中考攻略】專題7:幾何輔助線(圖)作法探討一些幾何題的證明或求解,由原圖形分析探究,有時(shí)顯得十分復(fù)雜,若通過(guò)適當(dāng)?shù)淖儞Q,即添加適當(dāng)?shù)妮o助線(圖),將原圖形轉(zhuǎn)換成一個(gè)完整的、特殊的、簡(jiǎn)單的新圖形,則能使原問(wèn)題的本質(zhì)得到充分的顯示,通過(guò)對(duì)新圖形的分析,原問(wèn)題順利獲解
2025-05-31 02:07
【摘要】專業(yè)資料分享圓中常見(jiàn)輔助線的做法一.遇到弦時(shí)(解決有關(guān)弦的問(wèn)題時(shí)),或作垂直于弦的半徑(或直徑)或再連結(jié)過(guò)弦的端點(diǎn)的半徑。作用:①利用垂徑定理;②利用圓心角及其所對(duì)的弧、弦和弦心距之間的關(guān)系;③利用弦的一半、弦心距和半徑組成直角三角形,根據(jù)勾股定理求
2025-05-31 03:14
【摘要】輔助線的作法正確熟練地掌握輔助線的作法和規(guī)律,也是迅速解題的關(guān)鍵,如何準(zhǔn)確地作出需要的輔助線,簡(jiǎn)單介紹幾種方法:方法一:從已知出發(fā)作出輔助線:DABCEFMN例1.已知:在△ABC中,AD是BC邊的中線,E是AD的中點(diǎn),F(xiàn)是BE延長(zhǎng)線與AC的交點(diǎn),求證:AF=分析:題設(shè)中含有D是BC中點(diǎn),E是AD中點(diǎn),由此可以聯(lián)想到三角形中與邊中點(diǎn)有密切聯(lián)
2025-07-03 13:03
【摘要】專業(yè)資料分享常見(jiàn)輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對(duì)折”.2)遇到三角形的中線,倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自
【摘要】200*1504K282*2829K329*24510K????295*24610K329*24510K333*2909K????365*26710K400*34814K
2025-04-29 02:46
【摘要】200*1504K282*2829K329*24510K295*24610K329*24510K333*2909K365*26710K400*34814K380*29511K
2024-11-11 17:05
【摘要】例1:已知如圖1-1:D、E為△ABC內(nèi)兩點(diǎn),求證:AB+AC>BD+DE+CE.例如:如圖2-1:已知D為△ABC內(nèi)的任一點(diǎn),求證:∠BDC>∠BAC。分析:因?yàn)椤螧DC與∠BAC不在同一個(gè)三角形中,沒(méi)有直接的聯(lián)系,可適當(dāng)添加輔助線構(gòu)造新的三角形,使∠BDC處于在外角的位置,∠BAC處于在內(nèi)角的位置;例如:如圖3-1:已知A
2025-08-07 03:37
【摘要】輔助線的添加【知識(shí)要點(diǎn)】平面幾何是中學(xué)數(shù)學(xué)的一個(gè)重要組成部分,證明是平面幾何的重要內(nèi)容。許多初中生對(duì)幾何證明題感到困難,尤其是對(duì)需要添加輔助線的證明題,往往束手無(wú)策。在這里我們介紹"添加輔助線"在平面幾何中的運(yùn)用。一、三角形中常見(jiàn)輔助線的添加1.與角平分線有關(guān)的ⅰ可向兩邊作垂線。ⅱ可作平行線,構(gòu)造等腰三角形ⅲ在角的兩邊截取相等的線
2025-05-01 12:57