【摘要】高斯求積公式?引言?求積公式?高斯求積公式的系數(shù)和余項(xiàng)?舉例引言n+1個(gè)節(jié)點(diǎn)的插值求積公式的代數(shù)精確度不低于n求積公式,能不能在區(qū)間[a,b]上適當(dāng)選擇n個(gè)節(jié)點(diǎn)x1,x2,……,xn,使插值求積公式的代數(shù)精度高于n?答案是肯定的,適當(dāng)選擇節(jié)點(diǎn),可使公式的精度最高達(dá)到2n+1,這就是所要介紹的
2024-08-15 08:34
【摘要】關(guān)鍵詞:高斯消去法,主元消去法高斯消元法與選主元高斯消元法是一個(gè)古老的直接法,由它改進(jìn)得到的選主元的消元法,是目前計(jì)算機(jī)上常用于求低階稠密矩陣方程組的有效方法,其特點(diǎn)就是通過消元將一般線性方程組的求解問題轉(zhuǎn)化為三角方程組的求解問題一問題的描述(一)引言為便
2025-08-04 17:20
【摘要】第四章方程組的直接解法Gauss消去法Gauss-Jordan消元法主元素消去法矩陣的三角分解Gauss消去法的計(jì)算過程第四章方程組的直接解法第4章線性方程組的直接解法教學(xué)目的1.掌握解線性方程組的高斯消去法、高斯選主元素消去法;2.掌握用直接三角分解法解線性方程組的方法
2024-10-16 16:35
【摘要】第三章數(shù)值積分與數(shù)值微分Gauss求積公式Gauss求積公式的余項(xiàng)與穩(wěn)定性常用Gauss求積公式Gauss求積公式的基本理論第三章數(shù)值積分與數(shù)值微分Gauss求積公式學(xué)習(xí)目標(biāo):掌握高斯求積公式的用法。會(huì)用高斯?勒讓德求積公式。第三章數(shù)值積分與數(shù)值微分Gauss求積公
2024-09-05 15:08
【摘要】1第四章線性方程組§高斯(Gauss)消元法§高斯(Gauss)消元法一、線性方程組的初等變換二、高斯(Gauss)消元法三、線性方程組求解結(jié)果的一般性討論2第四章線性方程組§高斯
2024-08-16 11:01
【摘要】解線性方程組的直接法/*DirectMethodforSolvingLinearSystems*/求解Axb?§1高斯消元法/*GaussianElimination*/?高斯消去法:思路首先將A化為上三角陣/*upper-triangularmatrix*/,再回代求解
2024-10-19 21:14
【摘要】1無窮區(qū)間上的反常積分無界函數(shù)的反常積分小結(jié)思考題作業(yè)第七節(jié)反常積分(廣義積分)improperintegral第五章定積分函數(shù)與函數(shù)??2常義積分積分區(qū)間有限被積函數(shù)有界積分區(qū)間無限被積函數(shù)無界常義積分的極限反常積分推廣反常積
2024-10-22 13:09
【摘要】abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-25 11:11
【摘要】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當(dāng)極限存在
2025-07-25 11:10
【摘要】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-22 21:34
【摘要】設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有????bababavduuvudv.定積分的分部積分公式推導(dǎo)??,vuvuuv?????,)(babauvdxuv???,??????bababadxvudxvuuv.?????bababavduuvud
2025-04-26 05:00
【摘要】問題???dxxex解決思路利用兩個(gè)函數(shù)乘積的求導(dǎo)法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvudv????分部積分公式第三節(jié)分部積分法容易計(jì)算.例1求積分.
【摘要】變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為?21)(TTdttv設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv,求物體在這段時(shí)間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問題
2025-07-25 11:18
【摘要】第二講微積分基本公式?內(nèi)容提要1.變上限的定積分;-萊布尼茲公式。?教學(xué)要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-19 01:35
【摘要】2設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有??????bababavduuvudv.定積分的分部積分公式推導(dǎo)??,vuvuuv???????,)(babauvdxuv?????,??????bababadxvudxvu
2025-05-15 04:24