【摘要】高考總復(fù)習(xí).理科.數(shù)學(xué)第八章平面向量高考總復(fù)習(xí).理科.數(shù)學(xué)考綱分解解讀高考總復(fù)習(xí).理科.數(shù)學(xué)(1)了解向量的實(shí)際背景.(2)理解平面向量的概念,理解兩個(gè)向量相等的含義.(3)理解向量的幾何表示.2.(1)掌握向量加法、減法的運(yùn)算,并理解其幾何意義.
2025-08-04 17:58
【摘要】上頁(yè)下頁(yè)返回結(jié)束2022年2月9日星期三徐州工程學(xué)院數(shù)理學(xué)院第八章空間解析幾何與向量代數(shù)上頁(yè)下頁(yè)返回結(jié)束2022年2月9日星期三徐州工程學(xué)院數(shù)理學(xué)院第一節(jié)向量及其線性運(yùn)算第八章一、向量的概念二、向量的線性運(yùn)算三、空間直角坐標(biāo)系
2025-01-15 10:28
【摘要】數(shù)量關(guān)系—第二部分空間解析幾何第一部分向量代數(shù)在三維空間中:空間形式—點(diǎn),線,面基本方法—坐標(biāo)法;向量法坐標(biāo),方程(組)空間解析幾何向量代數(shù)四、利用坐標(biāo)作向量的線性運(yùn)算第一節(jié)一、向量的概念二、向量的線性運(yùn)算三、空間直角坐標(biāo)系五、向量的模、方向
2025-01-23 11:43
【摘要】....,若,則O是的,內(nèi)角A,B,C所對(duì)應(yīng)的邊長(zhǎng)分別為,若,則O是的,A,B,C是平
2025-03-27 23:41
【摘要】......平面向量的線性運(yùn)算學(xué)習(xí)過(guò)程知識(shí)點(diǎn)一:向量的加法(1)定義已知非零向量,在平面內(nèi)任取一點(diǎn)A,作=,=,則向量叫做與的和,記作,即=+=.求兩個(gè)向量和的運(yùn)算,叫做叫向量的加法.這種求向量和的方法,稱(chēng)為向量加法的三角形
2025-03-28 01:22
【摘要】2022年1月4日12時(shí)38分(共31張)1高等數(shù)學(xué)(下冊(cè))主講:陳銀輝注意:?1.課堂必須保持安靜,有問(wèn)題請(qǐng)舉手。?2.上課嚴(yán)禁玩手機(jī),睡覺(jué)。?。?,嚴(yán)禁抄襲;?作業(yè)書(shū)寫(xiě)須工整,不得把作業(yè)本當(dāng)草稿本。?,不得私下發(fā)牢騷擾亂課堂。2022年1月4日12時(shí)
2024-12-11 00:43
【摘要】第四單元平面向量與復(fù)數(shù)第一節(jié)平面向量的概念及其線性運(yùn)算基礎(chǔ)梳理大小方向長(zhǎng)度模記作0長(zhǎng)度為的向量,其方向是任意的零向量向量模既有又有的量;向量的大小叫做向量的(或)向量表
2024-11-16 01:26
【摘要】第二節(jié)向量及其線性運(yùn)算一、向量及其幾何表示二、向量的坐標(biāo)表示三、向量的模與方向角四、向量的線性運(yùn)算五、向量的分向量表示式六、小結(jié)思考題向量(vector):既有大小又有方向的量.向量表示:以1M為起點(diǎn),2M為終點(diǎn)的有向線段.1M2M??a?21MM一、向量及其幾何表示
2024-09-03 12:44
【摘要】Oxya引入:,點(diǎn)A可以用什么來(lái)表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-16 17:25
【摘要】向量及向量的基本運(yùn)算高三備課組1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫(xiě)字母表示,如:。向量的大小即向量的模(長(zhǎng)度),記作||。②零向量:長(zhǎng)度為0的向量,記為,其方向是任意的,與任意向量平行。注意與
2024-11-14 07:31
【摘要】平面向量的概念及線性運(yùn)算知識(shí)點(diǎn):1.向量的有關(guān)概念名稱(chēng)定義備注向量既有大小,又有方向的量統(tǒng)稱(chēng)為向量;向量的大小叫做向量的長(zhǎng)度(或稱(chēng)模)平面向量是自由向量零向量長(zhǎng)度為0的向量;其方向是任意的記作0單位向量長(zhǎng)度等于1個(gè)單位的向量非零向量a的單位向量為±平行向量如果表示兩個(gè)向量的有向線段所在的直線平行或重合,則稱(chēng)這兩個(gè)向量平行或
2025-06-29 04:22
【摘要】......海伊教育學(xué)科教師輔導(dǎo)講義學(xué)員編號(hào):年級(jí):九年級(jí)課時(shí)數(shù):學(xué)員姓名:張鴻敬輔導(dǎo)科目:數(shù)學(xué)學(xué)科教師:高
2025-04-20 01:00
【摘要】aABABaaABaAB平面向量空間向量具有大小和方向的量具有大小和方向的量幾何表示法幾何表示法字母表示法字母表示法向量的大小向量的大小長(zhǎng)度為零的向量長(zhǎng)度為零的向量模為1的向量模為1的向量長(zhǎng)度相等且方向相反的向量長(zhǎng)
2024-11-28 17:38
【摘要】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件25《平面向量及向量的基本運(yùn)算》1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫(xiě)字母表示,如:。向量的大小即向量的模(長(zhǎng)度),記作||。②零向量:長(zhǎng)度為0的向量,記為,其方向
2024-11-14 00:27
【摘要】張保隆著現(xiàn)代管理數(shù)學(xué)2向量空間與線性轉(zhuǎn)換2-1向量與向量空間2-2線性獨(dú)立與基底2-3Rn的透視2-4線性轉(zhuǎn)換2-5線性轉(zhuǎn)換的代表矩陣2-6特徵值與特徵向量2-7二次形式現(xiàn)代管理數(shù)學(xué).Chapter2向量空間與線性轉(zhuǎn)換2-32-1
2024-10-21 18:27