【摘要】WORD格式整理版排列組合方法匯總與習(xí)題精選捆綁法、插空法、隔板法、分類法、集合法、枚舉法、圓排列、可重復(fù)排列1、五人并排站成一排,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有()A、60種B、48種C、36種D、24種2、七人并排站成一行,如果甲乙兩個必須不相鄰,那么不同的排法種數(shù)是()A、1440種B、
2025-07-29 11:28
【摘要】排列組合高考試題精選(二)1、五人并排站成一排,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有()A、60種B、48種C、36種D、24種2、七人并排站成一行,如果甲乙兩個必須不相鄰,那么不同的排法種數(shù)是()A、1440種B、3600種C、4820種D、4800種3、將數(shù)字1,2,3
2025-06-28 22:54
2025-06-28 23:00
【摘要】排列組合題型總結(jié)一.直接法1.特殊元素法例1用1,2,3,4,5,6這6個數(shù)字組成無重復(fù)的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(1)數(shù)字1不排在個位和千位(2)數(shù)字1不在個位,數(shù)字6不在千位。二.間接法當直接法求解類別比較大時,應(yīng)采用間接法。例2有五張卡片,它的正反面分別寫0與1,2與3,4與
2025-03-29 00:39
【摘要】第六節(jié)排列與組合(理)重點難點重點:1.兩個計數(shù)原理的理解和應(yīng)用.2.排列與組合的定義、計算公式,組合數(shù)的兩個性質(zhì).難點:1.如何區(qū)分實際問題中的“類”與“步”.2.組合數(shù)的性質(zhì)和有限制條件的排列組合問題.知識歸納1.分類計數(shù)原理完成一件事,
2025-08-10 11:23
【摘要】完美WORD格式《排列組合》一、排列與組合,有多少種不同選法?,1人下鄉(xiāng)演出,1人在本地演出,有多少種不同選派方法?3.現(xiàn)從男、女8名學(xué)生干部中選出2名男同學(xué)和1名女同學(xué)分別參加全?!百Y源”、“生態(tài)”和“環(huán)保”三個夏令營活動,已知共有90種不同的方案,那么男、女同
2025-06-28 22:56
【摘要】完美WORD格式《排列組合》一、排列與組合,有多少種不同選法?,1人下鄉(xiāng)演出,1人在本地演出,有多少種不同選派方法?3.現(xiàn)從男、女8名學(xué)生干部中選出2名男同學(xué)和1名女同學(xué)分別參加全校“資源”、“生態(tài)”和“環(huán)保”三個夏令營活動,已知共有90種不同的方案,那么男、女同
2025-08-08 07:32
【摘要】可重復(fù)的排列求冪法相鄰問題捆綁法相離問題插空法元素分析法(位置分析法)多排問題單排法定序問題縮倍法(等幾率法)標號排位問題(不配對問題)不同元素的分配問題(先分堆再分配)相同元素的分配問題隔板法:多面手問題(分類法---選定標準)走樓梯問題(分類法與插空法相結(jié)合)排數(shù)問題(注意數(shù)字“0”)高☆考♂資♀源€網(wǎng)☆染色問題“至
2025-08-08 06:28
【摘要】專業(yè)資料整理分享排列組合典型題大全一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個底數(shù),
2025-06-28 23:05
【摘要】排列組合問題經(jīng)典題型與通用方法:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當作一個大元素參與排列.,如果必須相鄰且在的右邊,則不同的排法有()A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問題,可先把無位置要求的幾個元素全排列,再把規(guī)定的相離的幾個元素插入上述幾個元
2025-06-28 22:57
【摘要】排列組合試題精選一、選擇題1、如圖,是中國西安世界園藝博覽會某區(qū)域的綠化美化示意圖,其中A、B、C、D是被劃分的四個區(qū)域,現(xiàn)有6種不同顏色的花,要求每個區(qū)域只能栽同一種花,允許同一顏色的花可以栽在不同的區(qū)域,但相鄰的區(qū)域不能栽同一色花,則不同的栽種方法共有(???)種。A.120?????
2025-03-28 02:37
【摘要】精品資源與幾何有關(guān)的排列組合題的解法排列組合是高考的必考內(nèi)容,而與幾何有關(guān)的排列組合題在歷年的高考中也經(jīng)常出現(xiàn),此類題的常用解法主要有以下幾種:一.總體淘汰法先在弱化條件下算出總數(shù),再嚴格篩選,把少數(shù)不合條件的除去。例1.(1996年全國高考題)正六邊形的中心和頂點共7個點,以其中3個點為頂點的三角形共有_________________個。
2025-03-27 05:48
【摘要】排列組合二項定理排列組合二項定理知識要點一、兩個原理.1.乘法原理、加法原理.2.可以有重復(fù)元素的排列.從m個不同元素中,每次取出n個元素,元素可以重復(fù)出現(xiàn),按照一定的順序排成一排,那么第一、第二……第n位上選取元素的方法都是m個,所以從m個不同元素中,每次取出n個元素可重復(fù)排列數(shù)m·m·…m=mn..例如:n件物品放入m個抽屜中,不限
【摘要】范文范例參考排列組合公式/排列組合計算公式排列P------和順序有關(guān)??組合C-------不牽涉到順序的問題排列分順序,組合不分例如把5本不同的書分給3個人,有幾種分法."排列"把5本書分給3個人,有幾種分法"組合"1.排列及計算公式
2025-06-28 22:59
【摘要】排列組合公式/排列組合計算公式排列P------和順序有關(guān)組合C-------不牽涉到順序的問題排列分順序,組合不分例如把5本不同的書分給3個人,有幾種分法."排列"把5本書分給3個人,有幾種分法"組合"1.排列及計算公式從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列
2025-08-08 07:21