【摘要】一、傅立葉變化的原理;(1)原理正交級數(shù)的展開是其理論基礎(chǔ)!將一個(gè)在時(shí)域收斂的函數(shù)展開成一系列不同頻率諧波的疊加,從而達(dá)到解決周期函數(shù)問題的目的。在此基礎(chǔ)上進(jìn)行推廣,從而可以對一個(gè)非周期函數(shù)進(jìn)行時(shí)頻變換。從分析的角度看,他是用簡單的函數(shù)去逼近(或代替)復(fù)雜函數(shù),從幾何的角度看,它是以一族正交函數(shù)為基向量,將函數(shù)空間進(jìn)行正交分解,相應(yīng)的系數(shù)即為坐標(biāo)。從變幻的角度的看,他建立了周期函數(shù)與
2025-07-29 02:21
【摘要】實(shí)驗(yàn)報(bào)告課程名稱:信號分析與處理指導(dǎo)老師:成績:__________________實(shí)驗(yàn)名稱:離散傅里葉變換和快速傅里葉變換實(shí)驗(yàn)類型:基礎(chǔ)實(shí)驗(yàn)同組學(xué)生姓名:第二次實(shí)驗(yàn)離散傅里葉變換和快速傅里葉變換裝訂線一、實(shí)驗(yàn)?zāi)康模―FT)的原理和實(shí)現(xiàn);(FFT)的原理和
2024-08-16 10:36
【摘要】......第2章 信號分析本章提要n 信號分類n 周期信號分析--傅里葉級數(shù)n 非周期信號分析--傅里葉變換n 脈沖函數(shù)及其性質(zhì)信號:反映研究對象狀態(tài)和運(yùn)動特征的物理量信號分析:從信
2025-06-29 15:07
【摘要】范文范例參考本科畢業(yè)論文(設(shè)計(jì))題目解析傅里葉變換2013年4月30日解析傅里葉變換西南大學(xué)電子信息工程學(xué)院,重慶400715摘要:傅里葉變換的實(shí)質(zhì)就是將信號分解成不同頻率復(fù)指數(shù)信號的疊加,由于復(fù)指數(shù)信號在LTI系統(tǒng)中的響應(yīng)十分簡單,且傅里葉變換具有多種極其有用的性質(zhì)使得傅里葉變換在信號分
2025-06-27 05:38
【摘要】二維小波變換MATLAB實(shí)現(xiàn)?dwt2函數(shù)?功能:二維離散小波變換?格式:[cA,cH,cV,cD]=dwt2(X,'wname')?[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)?說明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函數(shù)'wname
2025-05-18 01:27
【摘要】02nnEFSaT??????????202???t-TTfT(t)E……T增大保持不變,、?E主瓣寬度不變,譜線間隔??,譜線變密T?時(shí)域上,周期信號??非周期信號頻域上,離散譜??連續(xù)譜0?0?0?0?202???tf(t)
2025-07-29 18:28
【摘要】第四章快速傅立葉變換FastFourierTransform第一節(jié)直接計(jì)算DFT的問題及改進(jìn)途徑1、問題的提出設(shè)有限長序列x(n),非零值長度為N,若對x(n)進(jìn)行一次DFT運(yùn)算,共需多大的運(yùn)算工作量?計(jì)算成本?計(jì)算速度?2.DFT的運(yùn)算量回憶DFT和IDFT的變換
2024-08-26 23:53
【摘要】§傅里葉變換的性質(zhì)主要內(nèi)容對稱性質(zhì)線性性質(zhì)奇偶虛實(shí)性尺度變換性質(zhì)時(shí)移特性頻移特性微分性質(zhì)時(shí)域積分性質(zhì)意義傅里葉變換具有惟一性。傅氏變換的性質(zhì)揭示了信號的時(shí)域特性和頻域特性之間的確定的內(nèi)在聯(lián)系。討論傅里葉變換的性質(zhì),目的在于:?了解特性的內(nèi)
2025-07-29 18:31
【摘要】錯(cuò)過這篇文章,可能你這輩子不懂什么叫傅里葉變換了(一)圖片:TMAB2003/CCBY-ND如果看了這篇文章你還不懂傅里葉變換,那就過來掐死我吧Heinrich,生娃學(xué)工打折腿這篇文章的核心思想就是:要讓讀者在不看任何數(shù)學(xué)公式的情況下理解傅里葉分析。傅里葉分析不僅僅是一個(gè)數(shù)學(xué)工具,更是一種可以徹底顛覆一個(gè)人以前世界觀的思維模式。但不幸的是,傅里葉分析的公式
2024-08-16 02:04
【摘要】1第4章小波變換的matlab實(shí)現(xiàn)2?15種?經(jīng)典類小波:Harr小波、Morlet小波、Mexicanhat小波、Gaussian小波?正交小波:db小波、對稱小波、Coiflets小波、Meyer小波?雙正交小波?查看命令wavemngr('read',1)
2024-08-16 06:00
2025-05-04 02:11
【摘要】第七章傅里葉變換在自然科學(xué)和工程技術(shù)中為了把較復(fù)雜的運(yùn)算轉(zhuǎn)化為較簡單的運(yùn)算,人們常采用變換的方法來達(dá)到目的.例如在初等數(shù)學(xué)中,數(shù)量的乘積和商可以通過對數(shù)變換化為較簡單的加法和減法運(yùn)算.在工程數(shù)學(xué)里積分變換能夠?qū)⒎治鲞\(yùn)算(如微分、積分)轉(zhuǎn)化為代數(shù)運(yùn)算,正是積分變換的這一特性,使得它在微分方程、偏微分方程的求解中成為重要的方
【摘要】光信息專業(yè)實(shí)驗(yàn):傅里葉光學(xué)變換系統(tǒng)中山大學(xué)光信息專業(yè)實(shí)驗(yàn)報(bào)告:傅里葉光學(xué)變換系統(tǒng)實(shí)驗(yàn)人:何杰勇(11343022)合作人:徐藝靈組號B13一、實(shí)驗(yàn)?zāi)康暮蛢?nèi)容1、了解透鏡對入射波前的相位調(diào)制原理。2、加深對透鏡復(fù)振幅、傳遞函數(shù)、透過率等參量的物理意義的認(rèn)識。3、觀察透鏡的傅氏變換(FT)圖像,觀察4f系統(tǒng)的反傅氏變換(IFT)圖像,并進(jìn)行比較。4、在4f系統(tǒng)的
2025-06-29 15:04
【摘要】......?傅里葉變換的性質(zhì) 若信號和的傅里葉變換分別為和, 則對于任意的常數(shù)a和b,有 將其推廣,若,則
2025-06-29 16:02
【摘要】一傅里葉變換在應(yīng)用上的局限性在第三章中,已經(jīng)介紹了一個(gè)時(shí)間函數(shù)滿足狄里赫利條件并且絕對可積時(shí),即存在一對傅里葉變換。即(正變換)()??????????????
2025-06-29 16:22