【摘要】第九章一元函數(shù)積分學(xué)多元函數(shù)積分學(xué)重積分曲線積分曲面積分重積分??????????????????第二類曲面積分第一類曲面積分曲面積分第二類曲線積分第一類曲線積分曲線積分三重積分二重積分重積分?????公
2024-08-03 13:52
【摘要】第一節(jié)二重積分的概念與性質(zhì)一、二重積分的概念二、二重積分的性質(zhì)三、小結(jié)思考題第九章重積分柱體體積=底面積×高特點(diǎn):平頂.柱體體積=?特點(diǎn):曲頂.),(yxfz?D1.曲頂柱體的體積一、二重積分的概念播放求曲頂柱體的體積采用“分
2024-10-22 09:33
【摘要】一、問題的提出二、二重積分的概念三、二重積分的性質(zhì)四、小結(jié)思考題第一節(jié)二重積分的概念與性質(zhì)柱體(cylindricalbody)體積=底面積×高特點(diǎn):平頂.曲頂柱體體積=?特點(diǎn):曲頂(curvedvertexsurface).),(yxfz?D1.曲頂柱體的體積
2024-09-03 12:46
【摘要】第一節(jié)二重積分的概念與性質(zhì)一、問題的提出二、二重積分的概念三、二重積分的性質(zhì)四、小結(jié)思考題柱體體積=底面積×高特點(diǎn):平頂.柱體體積=?特點(diǎn):曲頂.),(yxfz?D1.曲頂柱體的體積一、問題的提出播放求曲頂柱體的體積采用“分割、
2025-02-24 12:14
【摘要】如果積分區(qū)域?yàn)椋?bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba一、利用直角坐標(biāo)系計(jì)算二重積分[X-型])(2xy??abD)(1xy??Dba)(2xy??)(1xy??為曲頂
2025-01-21 17:12
【摘要】第二節(jié)二重積分的計(jì)算一、二重積分在直角坐標(biāo)系下的計(jì)算二、二重積分在極坐標(biāo)系下的計(jì)算一、二重積分在直角坐標(biāo)系下的計(jì)算二重積分的計(jì)算主要是化為兩次定積分計(jì)算,簡稱為化為二次積分或累次積分.下面從二重積分的幾何意義來引出這種計(jì)算方法.在直角坐標(biāo)系中,如果用平行于兩個(gè)坐標(biāo)軸的兩組直線段,將區(qū)域D分割成n個(gè)小塊
2024-07-31 20:21
【摘要】第二節(jié)、二重積分的性質(zhì)假設(shè)以下各積分存在性質(zhì)1?????DDdyxfkdyxkf??),(),(k為常數(shù)性質(zhì)2?????????DDDdyxgDdyxfdyxgyxf???),(),()],(),([性質(zhì)3(可加性)???2121,DDDDD??且若(除分界線)??????
2024-10-15 12:29
【摘要】第二節(jié)二重積分的計(jì)算法教學(xué)目的:熟練掌握二重積分的計(jì)算方法教學(xué)重點(diǎn):利用直角坐標(biāo)和極坐標(biāo)計(jì)算二重積分教學(xué)難點(diǎn):化二重積分為二次積分的定限問題教學(xué)內(nèi)容:利用二重積分的定義來計(jì)算二重積分顯然是不實(shí)際的,二重積分的計(jì)算是通過兩個(gè)定積分的計(jì)算(即二次積分)來實(shí)現(xiàn)的.一、利用直角坐標(biāo)計(jì)算二重積分我們用幾何觀點(diǎn)來討論二重積分的計(jì)算問題.討論中,我們假定;假定積分區(qū)域
2025-04-10 07:56
【摘要】機(jī)動(dòng)目錄上頁下頁返回結(jié)束高等數(shù)學(xué)A電子教案第二節(jié)一、利用直角坐標(biāo)計(jì)算二重積分二重積分的計(jì)算法二、利用極坐標(biāo)計(jì)算二重積分三、二重積分的換元法第十章機(jī)動(dòng)目錄上頁下頁返回結(jié)束高等數(shù)學(xué)A電子教案xbad]
2025-05-04 18:15
【摘要】1第七章:二重積分一、基本概念及結(jié)論(1)曲頂柱體的體積)]0),([),(??yxfyxfz曲頂柱體是指它的底面是在平面上的有界閉區(qū)域,它的側(cè)面是以的邊界為準(zhǔn)線,母線平行于軸的柱面,它的頂是連續(xù)曲面xoyDDzxyzo),(y
2025-01-22 15:11
【摘要】第二節(jié)二重積分的計(jì)算法第九章一、利用直角坐標(biāo)計(jì)算二重積分且在D上連續(xù)時(shí),0),(?yxf當(dāng)被積函數(shù)???????bxaxyxD)()(:21??(,)ddVDfxyxy???曲頂柱體由曲頂柱體體積的計(jì)算可知,若D為X–型區(qū)域則)(1xy?
2025-01-22 19:11
【摘要】第一篇:利用二重積分證明不等式 f(x),g(x)是[a,b] òb af(x)dxòg(x)dx£(b-a)òf(x)g(x)dxaabb 證明由于f(x),g(x)是[a,b]單調(diào)增加的函...
2024-10-27 16:26
【摘要】第三節(jié)二重積分的應(yīng)用一、曲面的面積二、平面薄片的重心三、平面薄片的轉(zhuǎn)動(dòng)慣量四、平面薄片對質(zhì)點(diǎn)的引力把定積分的元素法推廣到二重積分的應(yīng)用中:???DdxdyyxfUdUUdyxfdyxdyxfdDUDDU.),(),(.),()
2024-07-31 17:41
【摘要】1第十章重積分一元函數(shù)積分學(xué)多元函數(shù)積分學(xué)重積分曲線積分曲面積分2三、二重積分的性質(zhì)§二重積分的概念與性質(zhì)一、引例二、二重積分的定義與可積性四、曲頂柱體體積的計(jì)算3解法:類似定積分解決問題的思想:一、引例給定曲頂柱體
2025-01-22 14:43
【摘要】第九節(jié)二重積分的計(jì)算(一)在直角坐標(biāo)系下計(jì)算二重積分如果積分區(qū)域?yàn)椋?bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba在直角坐標(biāo)系下計(jì)算二重積分[X-型]
2024-09-05 08:49