【摘要】目錄?第一章n階行列式?第二章矩陣?第三章線性方程組?第四章線性空間?第五章矩陣的特征值與特征向量?第六章二次型§n階行列式排列與逆序n階行列式的定義§行列式的性質(zhì)§行列式按行(列)展開定理
2025-07-25 09:41
【摘要】第一章行列式?二階與三階行列式?排列?n階行列式?n階行列式的性質(zhì)?行列式按一行(列)展開?Cramer法則本章內(nèi)容?行列式概念的形成?行列式的基本性質(zhì)和計(jì)算方法?利用行列式來解線性方程組山東理工大學(xué)
2024-12-10 18:39
【摘要】第一章行列式本章討論:1方程個(gè)數(shù)和未知數(shù)個(gè)數(shù)相同,且系數(shù)滿足特定條件的線性方程組的求解,從而得到行列式這個(gè)工具.1.引言2.排列3.n階行列式5.行列式的計(jì)算6.行列式按行(列)展開7.Cramer法則??行列式概念的形成行列式的性質(zhì)及
2024-08-27 02:01
【摘要】線性代數(shù)(第六版)同濟(jì)大學(xué)數(shù)學(xué)系.線性代數(shù)[M].第六版.北京:高等教育出版社,2022.課程簡(jiǎn)介:“線性代數(shù)”是一門本科階段必修的主干課程,課程內(nèi)容主要包括矩陣和向量的基本理論、基本方法及它們?cè)诮夥匠探M中的應(yīng)用。通過本課程的學(xué)習(xí),一方面使學(xué)生比較系統(tǒng)的理解線性代數(shù)的基本概念
2024-08-26 20:37
【摘要】線性代數(shù)練習(xí)紙[第一章]行列式習(xí)題1—1全排列及行列式的定義1.計(jì)算三階行列式。2.寫出4階行列式中含有因子并帶正號(hào)的項(xiàng)。3.利用行列式的定義計(jì)算下列行列式:⑴⑵⑶4.利用行列式的定義計(jì)算中的系數(shù)。
2024-08-16 10:50
【摘要】線性代數(shù)abcda0100b0001c1000d0010abcda0111b1011c1101d1110A+A2+A3=A=設(shè)有四個(gè)城市a,b,c,d,其城市之間存在航班a→b,b→d,c→a,d→c,問至多經(jīng)過兩
2024-08-26 20:40
【摘要】如何復(fù)習(xí)線形代數(shù)線性代數(shù)這門課的特點(diǎn)主要有兩個(gè):一是試題的計(jì)算量偏大,無論是行列式、矩陣、線性方程組的求解,還是特征值、特征向量和二次型的討論都涉及到大量的數(shù)值運(yùn)算,稍有不慎,即會(huì)出錯(cuò);二是前后內(nèi)容緊密相連,縱橫交織,既相對(duì)獨(dú)立又密不可分,形成了一個(gè)完整、獨(dú)特的知識(shí)體系.在掌握好基本概念、基本原理和基本方法的前提下,下面談?wù)勗趶?fù)習(xí)過程中應(yīng)注意的一些問題.一、加強(qiáng)計(jì)算能力訓(xùn)練,切
2024-08-18 11:03
【摘要】線性代數(shù)教材:鄭寶東主編.線性代數(shù)與空間解析幾何.高等教育出版社,北京,2022參考書:[1]同濟(jì)大學(xué)數(shù)學(xué)教研室編.線性代數(shù)(第六版).高等教育出版社.2022年[2]趙連偶,劉曉東.線性代數(shù)與幾何(面向21世紀(jì)課程教材).高等教育出版社[3]居余馬等.線性代數(shù).清華大學(xué)出版社第一章n階行列式
2024-08-16 16:28
【摘要】線性代數(shù)2022/3/131線性代數(shù)主要參考書:同濟(jì)大學(xué)《線性代數(shù)》北京大學(xué)《高等代數(shù)》線性代數(shù)2022/3/132線性代數(shù)2022/3/133線性代數(shù)的主要研究?jī)?nèi)容:1.線性方程組求解;2.求二次型的最簡(jiǎn)型。主要研究工具:1.行列式;2.矩陣;3.
2025-02-22 03:59
【摘要】行列式二階行列式的運(yùn)算???????.,222111cybxacybxa,12211221bababcbcx???,12211221babacacay???用加減消元法解方程組得)0(1221??baba,DDxx?,DDyy??
2025-05-16 14:27
【摘要】571上次課復(fù)習(xí)一、行列式的性質(zhì)及其推論性質(zhì)1行列式轉(zhuǎn)置,其值不變.571266853266853?根據(jù)性質(zhì)1,行所具有的性質(zhì)列也同樣具有.交換行列式的兩行,其值變號(hào).(列)性質(zhì)2推論如果行列式中有兩行(列)對(duì)應(yīng)元素相同,則此行列式為零.性質(zhì)3用數(shù)
2025-05-02 06:43
【摘要】,312213332112322311322113312312332211aaaaaaaaaaaaaaaaaa??????333231232221131211aaaaaaaaa例如??3223332211aaaaa????3321312312aaaaa????3122322113aaaaa??33312321
2025-05-14 10:27
【摘要】1第二章行列式2?行列式的概念?n階行列式的定義?行列式的性質(zhì)?行列式按行(列)展開定理?行列式的計(jì)算?再論可逆矩陣3二元線性方程組的求解(消元法).a11x1+a12x2=b1a21x1+a22x2=b2(1)(2)§1行列式的概念
2025-01-22 15:07
【摘要】1五.行列式按行(列)展開對(duì)于三階行列式,容易驗(yàn)證:333231232221131211aaaaaaaaa333123211333312321123332232211aaaaaaaaaaaaaaa???可見一個(gè)三階行列式可以轉(zhuǎn)化成三個(gè)二階行列式的計(jì)算。問題:一個(gè)n階行列式是
2025-05-10 00:52
【摘要】第三章行列式?第一節(jié)線性方程組與行列式?第二節(jié)排列?第三節(jié)n階行列式?第四節(jié)余子式與行列式展開?第五節(jié)克萊姆規(guī)則第一節(jié)線性方程組與行列式?一.初等代數(shù)回顧?1.二階行列式與二元一次方程組?2.三階行列式與三元一次方程組?二.線性方程組?三.后續(xù)內(nèi)容介紹二
2025-07-23 16:56