【正文】
附錄2:智能交通控制系統(tǒng)的梯形圖附錄3:智能交通燈控制系統(tǒng)的指令表 。從理論上的觀點來看,它進行顯示該如何運行控制交通工具到可到達的空間中拿取樣品 , 當對作反向到輸入空間即時的議題中拿取樣品被直接地從事:在那情況下對有限之物計算計時,而且在決定之前必須制作可得的資源不允許能實行的解決計算,它被顯示該如何確定安全和該如何為進一步的探險選擇有可能的候選人。 (標準偏離 秒)5 結(jié)論在這一張紙中計劃運算法則的一個被隨機化的運動被呈現(xiàn),基于使用一個無障礙指導系統(tǒng)如一個 概率 路標的地方性的計劃者結(jié)構(gòu)。 (圖 4) 基本運算法則, 不能夠非常有效地處理這一個情形,30 秒在最大多數(shù)的奔跑中,它 20 秒以上拿計算一個能實行的軌道。 (圖 3) 這一個例子非常容易地被計畫的計劃者處理了: 能實行的解決在 136 ms 中被一般說來發(fā)現(xiàn)。被用于所有的例子費用功能是總時間去目的地。計劃者被測試使用那些相同的情節(jié)做作土地的機械手例子。 模擬依賴一個完全非線的直升飛機,基于一個普遍使用過的最小量 復雜模型。圖 1: 地面機械手在固定的球體之中移動 圖 2: 地面機械手經(jīng)過移動門圖 3: 直升飛機在固定的球體之中飛 圖 4: 直升飛機飛過移動門 小的自治的直升機一個最初的動機是為了發(fā)展運算法則應用在這張圖紙里是為了小型自動的直升機的路徑進行任務規(guī)劃。 (圖 2) 然而,運算法則在圖紙中規(guī)劃能夠很有效地處理這一個情節(jié)。 第一個例子包括航行地面上的機械手經(jīng)過一組障礙表現(xiàn)在結(jié)構(gòu)空間中同樣地包圍, 如圖 1 所示 . 這一個例子非常容易地被處理被那規(guī)劃計劃者: 能實行的解決在 t 14 ms 中被一般說來發(fā)現(xiàn)。 另一個,最快速的軸然后被控制使用一個最小量 “努力”解決,藉由解決最小量時間問題使用相等。 時間二個棒 棒片段的長決定如追從: (6)上述 政策 π 過去一直控制被描述的交通工具 (3) 然后按下列各項定義: 考慮自由度xl 和 x2,“最慢的” 軸首先被決定, 和最佳的控制被應用的對應時間。對于任何的軸, 知道了開始的位置和速度是 x0 和 v0 ;結(jié)局 (平衡) 情況被需要的結(jié)局位置 xf 和零速度表示的特色。 地面上的機械手在這一個區(qū)段中,我們對和運動的相等一個平面的系統(tǒng)計劃感興趣 (3)每控制的大小而且被假定被跳躍。 統(tǒng)計的數(shù)據(jù)關(guān)于每個例子參照用一千個模擬的數(shù)據(jù)進行組合選擇。4 應用例子在下一個區(qū)段中我們呈現(xiàn)三個被計畫的運算法則的力量和柔性的例子。 軌道目錄跟隨這一個修剪程序,包含很少的節(jié)點,如此改良全部的計算效率。 如果在總費用到上的低范圍 去叫一個如此子目錄 (加號對應的邊緣費用) 比在費用到上的上面范圍更高去拿現(xiàn)在的節(jié),對應的次要目錄可能被安全地移動,當它不能夠可能地提供較好的解決勝于僅僅已經(jīng)被發(fā)現(xiàn)的那一。每一次新的能實行的解決被發(fā)現(xiàn),在費用到上的上面范圍 去可能被藉由向后沿著對于樹根的能實行的解決攀登樹更新。 目錄修剪在要為每個樹里程碑去儲存的費用上的上面和比較低的范圍可能有利地作為修剪樹和在計算上面駕車超速。 在運算法則的基礎(chǔ)維持相同的方式,要降低費用的子目錄任意地可能被選擇, 根據(jù)或?qū)σ惶字品峙? 或在每個目錄的潛水艇的子目錄主要的里程碑的總數(shù)上進行分配重量。沒有能實行的解決仍然被計算。 如果有沒有人,自每一主要的里程碑以后是 τ保全時間系數(shù),系統(tǒng)至少有τ秒的保證安全, 可得的為計算一個新的目錄.( 中級的里程碑總是至少有一個子目錄) 如果現(xiàn)在的根目錄有子目錄,那么有二個情形出現(xiàn):至少經(jīng)過已經(jīng)計算的能實行的解決的目錄之一領(lǐng)引到目的地。 可用來計算的時間被跳躍被或 0, 或在現(xiàn)在的軌道片段的期間之前。面對有限的計算時代維持安全保證是特別地重要,因為運算法則它本身沒有成功的決定性的保證。 這種情況下不能在無限時間內(nèi)保證其安全性,安全時間τ只確定運算法則將會至少有 τ秒計算新的解決方法的時間。 如果存在的,而且實際的, 主要的里程碑在沒有交通事故無限范圍上的可能被選中().。2) 在轉(zhuǎn)變期間逐漸增加的費用招致, 主要是為了簿記有目的企圖;再一次,這被使用做那些花費的功能在教育商數(shù)中表達(2). 即時的考慮一個重要議題出現(xiàn)隨機化的運算法則為編制路徑是駕駛系統(tǒng)對計劃的清楚的可能性對一不流動目標的方向的用法應歸于有限的計算次數(shù)。夫婦經(jīng)過系統(tǒng)動力學的增殖被設定初值,而且累積的費用被更新,依照 eq。那些可行道路沒被發(fā)現(xiàn)的特別節(jié)點,上限狀態(tài)捆在那些費用上去被初始化到+∞意思。2) 那些累積的費用和上限和下限費用應捆在費用上去。道路圖被作為一子目錄建造,由根目錄和分支目錄組成。Xf 而且第二級里程標可以被選擇成為更晚的迭代過程中擴大的子目錄節(jié)點。因為車輛沿著道路在運動中, 這些二次里程標在狀態(tài)空間很可能來自多樣均衡遠內(nèi)的點。二級里程標確定成為任何狀態(tài)的那些系統(tǒng)(連續(xù)或者斷續(xù))沿著那些道路服從那些父母節(jié)點領(lǐng)導, 在這個新近增加的里程標的目錄里。effort solution, by solving the minimum time problem using the equations (l).with,and by iterating over the parameteruntilThe randomized path planning has been tested in several examples, including cases with both fixed and moving obstacles, and in general proved to be very fast and reliable. The first example involves navigating the ground robot through a set of obstacles represented as spheres in the configuration space, as shown in Fig. 1 . This example was very easily handled by the proposedplanner: a feasible solution was found on average in t 14 ms (standard deviation 14 ms).In the second example the robot must go through moving openings in two walls: This example can be particularly difficult for randomized planners, since the environment is characterized by the presence of narrow passages (see Fig. 2). However, the algorithm proposed in the paper was able to deal with this scenario quite effectively. A feasible solution was found on average in ms, (standard deviation ms). Moreover, notice that in about 75% of the simulation runs the first, feasible solution was found in raider 100 ms. Small autonomous helicopterOne of the prime motivations for the development of the algorithm presented in this paper is the path planning task for a small autonomous helicopter. This section presents simulation results for a test case involving a small autonomous helicopter. The simulations rely upon a fully nonlinear helicopter simulation, based on a monly used minimumplexity The motion planning algorithms operating on the hybrid automaton structure19,28 are plemented a nonlinear control law29 to ensure tracking of the reference trajectory.The planner was tested using the same scenarios as for the ground robot examples. The output of the simulations was scaled, in such a way as to provide a meaningful parison of the two cases.The cost function used in all the examples is the total time needed to go to the destination. The first example involves navigating the helicopter through a set of obstacles represented as spheres in the configuration space (Fig. 3) . This example was very easily handled by the proposed planner: a feasible solution was found on average in 136 ms (standard deviation ms).In the second example the helicopter must go through moving openings in two walls (see Fig. 4) . The basic algorithm, was not able to handle this case very effectively, 30 In most runs, it took upwards of 20 seconds to pute a feasible trajectory. However, the extensions presented in this paper resulted in a significant reduction in the required putation time: tests performed indicate the average time required to pute a feasible solution to be only seconds (standard deviation seconds).5 ConclusionsIn this paper a randomized motion planning algorithm was presented, based on using an obstaclefree guidance systems as local planners in a probabilistic roadmapframework. The main advantage of the algorithm is the capability to address in an efficient and natural fashion the dynamics of the system, while at the same time providing a consistent decoupling between the motion planning and the lowlevel control tanks. From a theoretical point of view, it was shown how to perform uniform sampling in the reachable space of the vehicle , as opposed to sampling in the input space Realtime issues were directly addressed: in the case in which finite putation time and available resources do not allow the putation of a feasible solution before a decision has to be made, it was shown how to ensure safety and how to choose likely candidates for further exploration. Future work address motion planning