【正文】
考慮v的式(C1)的最小值服從 (C2)然后,我們可以把式(C2)的結(jié)果插入約束來獲得 (C3)解決(C3),在服從 (C4)上式可以插入式(C2)來獲得式(31)中的結(jié)果如下 (C5)50 非均勻陣列天線波束成形技術(shù)研究。48 非均勻陣列天線波束成形技術(shù)研究附錄C 49附錄C在這個附錄中,我們將展示用式(28),在給出的前提下,如何用拉格朗日乘數(shù)來更新v。備注:如果,是式(B6)的最佳結(jié)果。然后,我們使成為的滿秩矩陣。這個可以證實(shí)如下。3) 計(jì)算 (B17)備注:注意以上的算法,V的選擇不是唯一的。使用式(B10)的結(jié)果,我們重新把式(B6)中的最優(yōu)化問題寫成下式 (B13)在附錄A的公式的基礎(chǔ)上,從向量中我們可以得到式(B13)中的最優(yōu)化問題,這里 (B14)概述:結(jié)論可以概括如下:1) 選擇一個矩陣V,使,V是一個列滿秩。也就是說,存在一個列向量α使 (B12)如果的列是線性無關(guān)的,那么式(B12)意味著,這在V的定義()的基礎(chǔ)上是不能成真的。細(xì)想下面的解釋。注意式(B6)中的最優(yōu)化標(biāo)準(zhǔn)可以寫成 (B10) 這里 (B11) 省略掉約束,表示式(B6)中最優(yōu)化問題的最小平方解。然后,我們可以把W分解成兩部分 (B2)這里。我們必須使,把的這個值插入式(A5),我們可以把式(13)中的公式為 (A6)44 非均勻陣列天線波束成形技術(shù)研究附錄B 45附錄B 在這個附錄中,我們將描述怎樣使式(14)中的公式獲得更新值。式(A4)中的等式的左邊和右邊會相等,條件是 (A5) 這里表示一個任意變量因子。像之前一樣使表示U的第k列,我們首先重新定義式(12)中的最優(yōu)化問題為 (A1)考慮到此,對于(A2)這里,表示一個復(fù)數(shù)變量的實(shí)數(shù)部分。考慮到式(12)中的最優(yōu)化問題。在論文即將完成之際,我的心情無法平靜,從開始進(jìn)入課題到論文的順利完成,有多少可敬的師長、同學(xué)、朋友給了我無言的幫助,在這里請接受我誠摯的謝意!最后我還要感謝培養(yǎng)我長大含辛茹苦的父母,謝謝你們! 最后,再次對關(guān)心、幫助我的老師和同學(xué)表示衷心地感謝!35 非均勻陣列天線波束成形技術(shù)研究參考文獻(xiàn) 37參考文獻(xiàn)[1] A. A. Oliner and G. H. Knittel, Phased Array Antennas. Norwood, MA: Artech House, 1972.[2] E. Brookner, “Phased array radars,” Sci. Am., vol. 252, pp. 94–102, .[3] D. W. Bliss and K. W. Forsythe, “Multipleinput multipleoutput(MIMO) radar and imaging: Degrees of freedom and resolution,” inProc. 37th Asilomar Conf. Signals, Syst. Comput., Paci?c Grove, CA,Nov. 2003, vol. 1, pp. 54–59.[4] E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and , “MIMO radar: An idea whose time has e,” in Radar Conf., Apr. 2004, pp. 71–78.[5] E. Fishler, A. Haimovich, R. Blum, L. Cimini, D. Chizhik, and , “Performance of MIMO radar systems: Advantages of angular diversity,” in Proc. 38th Asilomar Conf. Signals, Syst. Comput.,Paci?c Grove, CA, Nov. 2004, vol. 1, pp. 305–309.[6] I. Bekkerman and J. Tabrikian, “Spatially coded signal model for activearrays,” in Proc. IEEE Int. Conf. Acoustics, Speech Signal Process.,Montreal, Quebec, Canada, Mar. 2004, vol. 2, pp. II/209–II/212.[7] K. Forsythe, D. Bliss, and G. Fawcett, “Multipleinput multipleoutput(MIMO) radar: Performance issues,” in Proc. 38th Asilomar Conf. Signals, Syst. Comput., Paci?c Grove, CA, Nov. 2004, vol. 1, pp. 310–315.[8] L. B. White and P. S. Ray, “Signal design for MIMO diversity systems,” in Proc. 38th Asilomar Conf. Signals, Syst. Comput., Paci?c Grove, CA, Nov. 2004, vol. 1, pp. 973–977.[9] F. C. Robey, S. Coutts, D. D. Weikle, J. C. McHarg, and K. Cuomo,“MIMO radar theory and experimental results,” in Proc. 38th Asilomar Conf. Signals, Syst. Comput., Paci?c Grove, CA, Nov. 2004, vol. 1, –304.[10] E. Fishler, A. Haimovich, R. Blum, L. Cimini, D. Chizhik, and , “Spatial diversity in radars—models and detection performance,” IEEE Trans. Signal Process., vol. 54, pp. 823–838, Mar. 2006.39 非均勻陣列天線波束成形技術(shù)研究[11] J. Li and P. Stoica, “MIMO radar with colocated antennas: Review of some recent work,” IEEE Signal. Process. Mag., vol. 24, no. 5, –114, Sep. 2007.[12] P. Stoica, J. Li, and Y. Xie, “On probing signal design for MIMO radar,” IEEE Trans. Signal Process., vol. 55, no. 8, pp. 4151–4161, Aug. 2007.[13] A. H. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal. Process. Mag., vol. 25, , pp. 116–129, Jan. 2008.[14] D. R. Fuhrmann and G. San Antonio, “Transmit beamforming for MIMO radar systems using signal crosscorrelation,” IEEE Trans. Aerosp. Electron. Syst., vol. 44, pp. 1–16, Jan. 2008.[15] B. Guo and J. Li, “Waveform diversity based ultrasound system for hyperthermia treatment of breast cancer,” IEEE Trans. Biomed. Eng., vol. 55, pp. 822–826, 2008.[16] MIMO Radar Signal Processing, J. Li and P. Stoica, Eds. Hoboken,NJ: Wiley, 2009.[17] X. Zeng, J. Li, and R. J. McGough, “A waveform diversity method for optimizing 3D power depositions generated by ultrasound arrays,” IEEE Trans. Biomed. Eng., unpublished.[18] H. Unz, “Linear arrays with arbitrarily distributed elements,” IRE Trans Antennas Propag, vol. 8, no. 2, pp. 222–223, Mar. 1960.[19] A. L. Maffett, “Sidelobe reduction by nonuniform element spacing,” IRE Trans Antennas Propag, vol. 9, no. 2, pp. 187–192, Mar. 1961.[20] M. G. Andreasen, “Linear arrays with variable interelement spacings,”IRE Trans Antennas Propag, vol. 10, no. 2, pp. 137–143, Mar. 1962.[21] A. Ishimaru, “Theory of unequallyspaced arrays,” IRE Trans Antennas Propag, vol. 10, no. 6, pp. 691–702, Nov. 1962.[22] A. L. Maffett, “Array factors with nonuniform spacing parameter,” IRE Trans. Antennas Propag., vol. 10, no. 2, pp. 131–136, Mar. 1962.[23] Y. T. Lo and