【摘要】小專題(二) 利用勾股定理解決折疊與展開問題 類型1 利用勾股定理解決平面圖形的折疊問題1.如圖,有一張直角三角形紙片,兩直角邊AC=5cm,BC=10cm,將△ABC折疊,使點B與點A重合,折痕為DE,則CD的長為( )A.cmB.cmC.cmD
2025-06-29 06:17
【摘要】方法歸納利用勾股定理解決折疊問題一、利用勾股定理解決平面圖形的折疊問題【例1】如圖,有一張直角三角形紙片,兩直角邊AC=5cm,BC=10cm,將△ABC折疊,使點B與點A重合,折痕為DE,則CD的長為()A.cmB.cmC.cmD.cm【分析】圖中CD在R
2025-03-28 03:25
【摘要】利用勾股定理解決折疊問題的教學設計一、內(nèi)容和內(nèi)容解析1、內(nèi)容利用勾股定理求解折疊問題中的線段長度2、內(nèi)容解析勾股定理是第十七章的內(nèi)容,它指出了直角三角形三邊之間的數(shù)量關系,這就搭建起了幾何圖形和數(shù)量關系之間的一座橋梁,從而發(fā)揮了重要的作用。勾股定理不僅在平面幾何中是重要的定理,而且在三角形、解析幾何、微積分中都是理論基礎,沒有勾股定理,就難以建立起整個數(shù)學的大廈。因此,勾股
2025-03-27 12:44
【摘要】CA解:由折疊知AB=AB′=3,BE=B′E,∠B=∠AB′E=90°,設BE的長為x,在Rt△ABC中,BC=AC2-AB2=52-32=4,∴EC=BC-BE=4-x,在Rt△EB′C中,B′C=AC-AB
2024-12-04 15:12
【摘要】HK版八年級下階段核心技巧巧用勾股定理解折疊問題第18章勾股定理4提示:點擊進入習題答案顯示123A見習題見習題見習題1.【中考·泰安】如圖①是一直角三角形紙片,∠A=30°,BC=4cm,將其折疊,使點
2025-03-14 12:18
【摘要】專題:勾股定理在折疊問題中應用(1)折疊的規(guī)律是,折疊部分的圖形,折疊前后,關于折痕成軸對稱,兩圖形全等.(2)利用線段關系和勾股定理,運用方程思想進行計算.(一)三角形的折疊ACBDC′,Rt⊿ABC中,∠C=90°,AC=6,AB=10,D為BC上一點,將AC沿AD折疊,使點C落在AB上,求CD的長
2025-03-27 05:53
【摘要】《勾股定理》典型例題折疊問題1、如圖,有一張直角三角形紙片,兩直角邊AC=6,BC=8,將△ABC折疊,使點B與點A重合,折痕為DE,則CD等于()A.B.C.D.
2025-03-27 13:01
【摘要】折疊問題與勾股定理例題總結1.如圖,在矩形ABCD中,AB=6,BC=8。將矩形ABCD沿CE折疊后,使點D恰好落在對角線AC上的點F處。(1)求EF的長;(2)求梯形ABCE的面積。2.如圖所示,在?ABC中,AB=20,AC=12,BC=16,把?ABC折疊,使AB落在直線AC上,求重疊部分(陰影部分)的面積.3
2025-03-28 02:27
【摘要】與直角有關的折疊問題(一),將矩形ABCD的四個角向內(nèi)折起,恰好拼成一個無縫隙無重疊的四邊形EFGH,若EH=9厘米,EF=12厘米,則邊AD的長是(????)A.12厘米B.15厘米C.20厘米D.21厘米2.?如圖,在矩形ABCD中,AB=4,BC=8,將矩形ABCD沿EF折
2025-03-27 12:58
【摘要】折疊問題與等面積法(講義)一、知識點睛1.折疊問題處理思路:(1)找__________________;(2)____________________;(3)利用_______________列方程.2.等面積法當幾何圖形中出現(xiàn)多個高(垂直、距離)的時候,可以考慮______________解決問題,即利用圖形面積的不同表達方式列方程.二、精講精練
【摘要】一、折疊四邊形矩形ABCD如圖折疊,使點D落在BC邊上的點F處,已知AB=8,BC=10,求折痕AE的長。ABCDFE折疊矩形紙片,先折出折痕對角線BD,在繞點D折疊,使點A落在BD的E處,折痕DG,若AB=2,BC=1,求AG的長。DAGBCE;人力資源
2024-08-27 01:02
【摘要】一、折疊四邊形矩形ABCD如圖折疊,使點D落在BC邊上的點F處,已知AB=8,BC=10,求折痕AE的長。ABCDFE折疊矩形紙片,先折出折痕對角線BD,在繞點D折疊,使點A落在BD的E處,折痕DG,若AB=2,BC=1,求AG的長。DAGBCE長方形ABC
2024-11-10 13:14
【摘要】一、折疊四邊形折疊矩形紙片,先折出折痕對角線BD,在繞點D折疊,使點A落在BD的E處,折痕DG,若AB=2,BC=1,求AG的長。DAGBCE矩形ABCD如圖折疊,使點D落在BC邊上的點F處,已知AB=8,BC=10,求折痕AE的長。ABCDFE矩形ABCD
2024-11-10 12:54
【摘要】勾股定理的應用1——圖形的翻折的導學案一、直角三角形的折疊問題展示直角三角形紙片1.已知△ABC中,∠B=90°,AB=4,BC=3,則AC=斜邊AC邊上的高AD=折疊1:將△ABC折疊,使點A與B重合(如圖1),則圖中有哪些相等的線段?求BD折疊2:將△ABC折疊,使點A與C重合(如圖2),(1
2025-06-25 03:47
【摘要】第1頁共3頁初中數(shù)學勾股定理之折疊問題、整體代換基礎題一、單選題(共10道,每道10分),有一個直角三角形紙片,兩直角邊AC=3,BC=4,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,你能求出CD的長嗎?()B.2C.D.3
2024-08-24 13:27