【摘要】勾股定理中考難題1、如圖,點E在正方形ABCD內,滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是( ?。.48B.60C.76D.802、如圖,在平面直角坐標系中,Rt△OAB的頂點A在x軸的正半軸上.頂點B的坐標為(3,),點C的坐標為(,0),點P為斜邊OB上的一個動點,則PA+PC的最小值為( ) A
2025-06-22 04:05
【摘要】經典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點撥:寫解的過程中,一定要先寫上在哪個直角三角形中,注意勾股定理的變形使用。解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=
2025-06-23 07:39
【摘要】勾股定理競賽培訓題1、如圖1,△ABC和△CDE都是等腰直角三角形,∠C=90°,將△CDE繞點C逆時針旋轉一個角度α(0°<α<90°),使點A,D,E在同一直線上,連接AD,BE.(1)①依題意補全圖2;②求證:AD=BE,且AD⊥BE;③作CM⊥DE,垂足為M,請用等式表示出線段CM,AE,BE之間的數(shù)量關系;(2)如圖3,正方形ABC
2025-06-28 00:04
【摘要】勾股定理復習一、知識要點:1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說:如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。勾股定理在西方叫畢達哥拉斯定理,也叫百牛定理。它是直角三角形的一條重要性質,揭示的是三邊之間的數(shù)量關系。它的主要作用是已知直角三角形的兩邊求第三邊
【摘要】勾股定理的逆定理達標訓練一、基礎·鞏固,不是直角三角形的是()∶2∶3∶2∶3∶4∶5∶4∶5-2-4所示,有一個形狀為直角梯形的零件ABCD,AD∥BC,斜腰DC的長為10cm,∠D=120°,則該零件另一腰AB的長是________cm(結果不取近似值).
2025-06-22 19:16
【摘要】高任祿成勾股定理練習題一、基礎達標:1.下列說法正確的是( ?。゛、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a
2025-06-22 07:15
【摘要】勾股定理中考難題1、如圖,點E在正方形ABCD內,滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是( ) A.48B.60C.76D.802、如圖,在平面直角坐標系中,Rt△OAB的頂點A在x軸的正半軸上.頂點B的坐標為(3,),點C的坐標為(,0),點P為斜邊OB上的一個動點,則PA+PC的最小值為( ?。
2025-06-28 01:48
【摘要】勾股定理能力測試卷一、選擇題(每小題3分,共30分)1.直角三角形一直角邊長為12,另兩條邊長均為自然數(shù),則其周長為().(A)30(B)28(C)56(D)不能確定2.直角三角形的斜邊比一直角邊長2cm,另一直角邊長為6cm,則它的斜邊長(A)4cm (B)8cm (C)10cm
2025-06-22 04:06
【摘要】勾股定理經典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點撥:寫解的過程中,一定要先寫上在哪個直角三角形中,注意勾股定理的變形使用。解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=
2025-06-23 07:40
【摘要】勾股定理課時練(1)1.在直角三角形ABC中,斜邊AB=1,則AB的值是(),AD∥BC,斜腰DC的長為10cm,∠D=120°,則該零件另一腰AB的長是______cm(結果不取近似值).3.直角三角形兩直角邊長分別為5和12,則它斜邊上的高為_______.,猶如裝有鉸鏈那樣倒向地面,旗桿頂落于離旗桿地步16,
【摘要】勾股定理復習考點一:已知直角三角形的兩邊求第三邊1、在Rt△ABC中,∠C=90°,a、b分別為直角邊,c為斜邊,求下列問題:(1)已知:a=5,b=12,則c=_____(2)已知:c=17,b=15,則c=_____(3)已知a:b=3:4,且c=10,則a=_____;b=_____2、已知△ABC中,∠B=90°,AC=13cm,BC=5
2025-04-16 23:55
【摘要】勾股定理逆定理的應用檢測題.如圖6,甲乙兩船從港口A同時出發(fā),甲船以16海里/時速度向北偏東50°航行,乙船以12海里/時向南偏東方向航行,3小時后,甲船到達C島,、B兩島相距60海里,問乙船出發(fā)后的航向是南偏東多少度?(10分)圖65.如圖,△ABC的三邊分別為AC=5,BC=12,AB=13,將△ABC沿AD折疊,使AC落在AB上,求
2025-03-24 13:01
【摘要】第1頁共5頁八年級數(shù)學勾股定理及其逆定理(勾股定理)基礎練習試卷簡介:全卷共6個選擇題,5個填空題,2個大題,分值100,測試時間30分鐘。本套試卷立足基礎,主要考察了學生對勾股定理及其逆定理基礎知識及基本運用的的掌握。各個題目難度有階梯性,學生在做題過程中可以回顧本章知識點,認清自己對知識的掌握及靈活運用程
2025-08-20 18:06
【摘要】第一篇:勾股定理與幾何證明答案 1、勾股定理與幾何證明的綜合問題 練習 一、利用勾股定理證明一些重要的幾何定理 1、如圖,在Rt△ABC中,∠ACB=90°,:(1)CD2=AD·BD (這...
2024-11-16 05:54