【摘要】微分方程 什么是微分方程?它是怎樣產(chǎn)生的?這是首先要回答的問題. 300多年前,由牛頓(Newton,1642-1727)和萊布尼茲(Leibniz,1646-1716)所創(chuàng)立的微積分學(xué),是人類科學(xué)史上劃時代的重大發(fā)現(xiàn),而微積分的產(chǎn)生和發(fā)展,,,運(yùn)動規(guī)律很難全靠實驗觀測認(rèn)識清楚,,運(yùn)動物體(變量)與它的瞬時變化率(導(dǎo)數(shù))之間,通常在運(yùn)動過程中按照某種己知定律存在著聯(lián)系,我們?nèi)?/span>
2025-06-27 23:00
【摘要】這一部分里,我們將看到以下內(nèi)容?幾個典型物理問題及其數(shù)學(xué)描述(微分方程和定解條件)?微分方程的類型?微分方程的邊界條件?微分方程及其邊界條件的等效積分原理幾個典型的問題?弦振動問題的微分方程及定解條件?傳熱問題的微分方程及定解條件?位勢方程及定解條件弦是一種抽象模型,工程實際中,可以模擬繩鎖、
2025-05-19 04:17
【摘要】微分方程數(shù)值解課程設(shè)計報告班級:______________姓名:_________學(xué)號:___________成績:2017年6月21日目錄一、摘要 1二、常微分方程數(shù)值解 24階Runge-Kutta法
2025-04-19 23:19
【摘要】本科生實驗報告實驗課程微分方程數(shù)值解學(xué)院名稱管理科學(xué)學(xué)院專業(yè)名稱信息與計算科學(xué)學(xué)生姓名學(xué)生學(xué)號指導(dǎo)教師林紅霞實驗地點(diǎn)6C402實驗成績二〇一五年十月二〇一五年十一月填寫說明1、適用于本科生所有的實驗報告(印制實驗報告冊除外);2、專業(yè)填寫為專業(yè)全
2025-06-26 00:43
【摘要】微分方程例題選解1.求解微分方程。解:原方程化為,通解為由,,得,所求特解為。2.求解微分方程。解:令,,原方程化為,分離變量得,積分得,原方程的通解為。3.求解微分方程。解:此題為全微分方程。下面利用“湊微分”的方法求解。原方程化為,由,得,
2024-08-04 09:11
【摘要】微分方程的近似解法差分解法對三類典型偏微分方程的定解問題,差分解法的基本思想是用函數(shù)的差商代替微商,從而把微分運(yùn)算化成代數(shù)運(yùn)算,求解出在定解區(qū)域中足夠多的點(diǎn)上的近似值。1、差分與差分方程n函數(shù)f(x)的導(dǎo)數(shù)是函數(shù)的增量與自變量增量的比值當(dāng)自變量增量趨于零的極限。n即:一階差商高階差商由差商代替微商的誤差偏導(dǎo)數(shù)的差商表示差分方程
2024-08-16 07:11
【摘要】第四次:常微分方程數(shù)值解一:引言:1:微分方程在數(shù)模中有重要作用。2:列出微分方程僅是第一步,求解微方程為第二步。3:但僅有少數(shù)微分方程可解析解,大部分非線性方程,變系數(shù)方程,均所謂“解不出來”)1()()(()()]()[()(:1____])
2024-09-02 11:53
【摘要】數(shù)學(xué)與計算科學(xué)學(xué)院實驗報告實驗項目名稱Eular方法求解一階常微分方程數(shù)值解所屬課程名稱偏微分方程數(shù)值解實驗類型驗證性實驗日期20
2025-07-27 00:27
【摘要】[原創(chuàng)]偏微分方程數(shù)值解法的MATLAB源碼【更新完畢】說明:由于偏微分的程序都比較長,比其他的算法稍復(fù)雜一些,所以另開一貼,專門上傳偏微分的程序謝謝大家的支持!其他的數(shù)值算法見:..//Announce/?BoardID=209&id=82450041、古典顯式格式求解拋物型偏微分方程(一維熱傳導(dǎo)方程)function[Uxt]=PDEPara
2025-06-22 22:12
【摘要】第三章微分方程模型一、微分方程知識簡介我們要掌握常微分方程的一些基礎(chǔ)知識,對一些可以求解的微分方程及其方程組,要求掌握其解法,并了解一些方程的近似解法。微分方程的體系:(1)初等積分法(一階方程及幾類可降階為一階的方程)(2)一階線性微分方程組(常系數(shù)線性微分方程組的解法)(3)高階線性微分方程(高階線性常系數(shù)微分方程解法)。其中還包括了常微分方程的基本定理。
2025-06-27 22:55
【摘要】微分方程數(shù)值解課程設(shè)計姓名*****學(xué)號200******專業(yè)信息與計算科學(xué)課設(shè)題目:對初邊值問題2222xutu?????(0x1)0||10??
2025-01-15 04:03
2025-06-10 05:22
【摘要】第六章微分方程及其應(yīng)用常微分方程的基本概念與分離變量法一階線性微分方程二階常系數(shù)線性微分方程常微分在經(jīng)濟(jì)中應(yīng)用常微分方程的基本概念與分離變量法微分方程的基本概念1.微分方程含有未知函數(shù)的導(dǎo)數(shù)或微分的方程稱為微分方程。注:在微分方程中,如果未知
2024-11-06 21:15
【摘要】演示課件之三微分方程解的性態(tài)演示實驗一、Lorenz微分方程模型實驗?zāi)康淖寣W(xué)生觀察常微分方程組解的某些特征,從而揭示其中的數(shù)學(xué)規(guī)律和奧妙!著名的Lorenz微分方程模型:假定參數(shù)分別取值為:β=8/3,σ=10,ρ=28
2024-10-06 14:58
【摘要】§微分方程的基本概念一、微分方程的基本概念二、幾類簡單的微分方程可分離變量的微分方程齊次微分方程一階線性微分方程二階常系數(shù)線性微分方程微分方程、微分方程的解通解與特解、初始條件例1求過點(diǎn)(1,3)且切線斜率為2x的曲線方程。解:設(shè)所
2024-10-22 18:02