【摘要】第一章《勾股定理》專項(xiàng)練習(xí)專題一:勾股定理考點(diǎn)分析:勾股定理單獨(dú)命題的題目較少,常與方程、函數(shù),四邊形等知識(shí)綜合在一起考查,在中考試卷中的常見題型為填空題、選擇題和較簡(jiǎn)單的解答題1801506060ABC圖1典例剖析例1.(1)如圖1是一個(gè)外輪廓為矩形的機(jī)器零件平面示意圖,根據(jù)圖中的尺寸(單位:),計(jì)算兩圓孔中心和的距離為_____
2025-06-26 07:41
【摘要】:如圖,在△ABC中,∠C=90°,點(diǎn)M在BC上,且BM=AC,點(diǎn)N在AC上,且AN=MC,AM與BN相交于點(diǎn)P,求證:∠BPM=45°答案:如圖,過點(diǎn)M作ME∥=(平行等于)AN,連NE,BE,則四邊形AMEN為平行四邊形得NE=AM,ME⊥BC∵M(jìn)E=CM,∠EMB=∠MCA=90°,BM=AC∴△BEM≌△AMC,得BE=AM=NE,∠1=∠2
【摘要】勾股定理經(jīng)典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點(diǎn)撥:寫解的過程中,一定要先寫上在哪個(gè)直角三角形中,注意勾股定理的變形使用。解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=
2025-06-26 07:40
【摘要】勾股定理習(xí)題集一、選擇題(本大題共13小題,)1.下列命題中,是假命題的是(??)A.在△ABC中,若∠B=∠C-∠A,則△ABC是直角三角形B.在△ABC中,若a2=(b+c)?(b-c),則△ABC是直角三角形C.在△ABC中,若∠A:∠B:∠C=3:4:5,則△ABC是直角三角形D.在△ABC中,若a:b:c=3:4:5,則△ABC是直角三角
2025-06-25 04:05
【摘要】勾股定理練習(xí)題一、基礎(chǔ)達(dá)標(biāo):1.下列說法正確的是( )a、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2.2.Rt△ABC的三條邊長(zhǎng)分別是、、,則下列各式成立的是( )A.B. C
2025-06-25 07:28
【摘要】勾股定理經(jīng)典例題類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點(diǎn)撥:寫解的過程中,一定要先寫上在哪個(gè)直角三角形中,注意勾股定理的變形使用。舉一反三【變式】:如圖∠B=∠ACD=90
2025-06-26 05:28
【摘要】答案1、25海里2、3、10千米4、20km5、(1)AB=30海里BC=40海里(2)省1小時(shí)6、96平方米7、2√3–48、4米9、10天10、AB=12m11、7米12、13、10米14、7200元15、480元16
2025-06-25 07:15
【摘要】高任祿成勾股定理練習(xí)題一、基礎(chǔ)達(dá)標(biāo):1.下列說法正確的是( ?。゛、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a
【摘要】勾股定理專題復(fù)習(xí)1.勾股定理內(nèi)容:直角三角形兩直角邊的平方和等于斜邊的平方;表示方法:如果直角三角形的兩直角邊分別為,,斜邊為,那么勾股定理的由來:勾股定理也叫商高定理,在西方稱為畢達(dá)哥拉斯定理.我國(guó)古代把直角三角形中較短的直角邊稱為勾,較長(zhǎng)的直角邊稱為股,斜邊稱為弦.早在三千多年前,周朝數(shù)學(xué)家商高就提出了“勾三,股四,弦五”形式的勾股定理,后來人們進(jìn)一步發(fā)現(xiàn)并證明了直角
2025-04-19 23:55
【摘要】勾股定理及其逆定理專題復(fù)習(xí),5,x為邊組成直角三角形,則x應(yīng)滿足()A. B. C. D.圖(3)A10064:3,其差為2㎝,則三角形的周長(zhǎng)是( )㎝ ㎝ ㎝ ㎝(3),正方形A的面積為()A.6B.36C.64D.84.若線段a,b,c組成Rt△,則它們的比為( ?。〢、2∶
2025-04-19 23:53
【摘要】《勾股定理》練習(xí)題及答案測(cè)試1勾股定理(一)學(xué)習(xí)要求掌握勾股定理的內(nèi)容及證明方法,能夠熟練地運(yùn)用勾股定理由已知直角三角形中的兩條邊長(zhǎng)求出第三條邊長(zhǎng).課堂學(xué)習(xí)檢測(cè)一、填空題1.如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,那么______=c2;這一定理在我國(guó)被稱為______.2.△ABC中,∠C=90°,a、b、c分別是∠A、∠B、∠C的對(duì)邊.
【摘要】魯教版七年級(jí)數(shù)學(xué)上冊(cè)期末總復(fù)習(xí)第三四單元勾股定理和實(shí)數(shù)復(fù)習(xí)測(cè)試題(含答案)一.選擇題(共14小題)1.如圖,每個(gè)小正方形的邊長(zhǎng)都相等,A、B、C是小正方形的頂點(diǎn),則∠ABC的度數(shù)為( ?。〢.30° B.45° C.60° D.90°?。?題圖)(3題圖)(6題圖)(7題圖)
2025-06-25 03:44
【摘要】勾股定理經(jīng)典例題含答案11頁勾股定理是一個(gè)基本的初等幾何定理,直角三角形兩直角邊的平方和等于斜邊的平方。如果直角三角形兩直角邊為a和b,斜邊為c,那么a2+b2=c2,若a、b、c都是正整數(shù),(a,b,c)叫做勾股數(shù)組。勾股定理現(xiàn)約有500種證明方法,是數(shù)學(xué)定理中證明方法最多的定理之一。勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,用代數(shù)思想解決幾何問題的
【摘要】......勾股定理經(jīng)典例題類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求