【摘要】1§3-3Cauchy積分公式和高階導(dǎo)數(shù)公式一、解析函數(shù)的Cauchy積分公式二、解析函數(shù)的高階導(dǎo)數(shù)定理三Δ、解析函數(shù)的實部和虛部與調(diào)和函數(shù)2.,0中一點為為一單連通區(qū)域設(shè)DzD,d)(0??Czzzzf一般不為零所以.)(,)(00不解析在那
2025-04-29 08:35
【摘要】第五講原函數(shù)與不定積分Cauchy積分公式解析函數(shù)的高階導(dǎo)數(shù)?1.原函數(shù)與不定積分的概念?2.積分計算公式§原函數(shù)與不定積分1.原函數(shù)與不定積分的概念由§2基本定理的推論知:設(shè)f(z)在單連通區(qū)域B內(nèi)解析,則對B中任意曲線C,積分?cfdz與路徑
2025-05-17 18:11
【摘要】Cauchy積分公式定理設(shè)區(qū)域D的邊界是圍線(或復(fù)圍線)C,f(z)在D內(nèi)解析,在=D+C上連續(xù),則有:).()(21)(Dzdzfizfc????????這就是柯西積分公式.()Cauchy積分公式Dz定理設(shè)區(qū)域D的邊界是圍線(或復(fù)圍
2025-01-16 05:43
【摘要】復(fù)合函數(shù)求導(dǎo)法則例4設(shè)。解
2025-01-18 15:12
【摘要】1導(dǎo)數(shù)的概念第三章導(dǎo)數(shù)與微分求導(dǎo)法則基本導(dǎo)數(shù)公式與高階導(dǎo)數(shù)函數(shù)的微分導(dǎo)數(shù)在經(jīng)濟學(xué)中的簡單應(yīng)用22.高階導(dǎo)數(shù)基本導(dǎo)數(shù)公式與高階導(dǎo)數(shù)1.基本導(dǎo)數(shù)公式2/5/20223(1).()C??0(2).()x?
2025-01-11 13:30
2025-05-19 01:34
【摘要】第四節(jié)高階導(dǎo)數(shù)引例:變速直線運動),(tss?)()(tstv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點為函數(shù)則稱存在即處可導(dǎo)在點的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-04-26 04:25
【摘要】(一)含有的積分()1.=2.=()3.=4.=5.=6.=7.=8.=9.=(二)含有的積分10.=11.=12.=13.=14.=15.=16.=17.=18.=(三)含有的積分19.=20.=21.=(四)含有的積分22.=23.=24.=25.=26.=27.=2
2024-09-03 22:01
【摘要】§導(dǎo)數(shù)的基本公式和運算法則0)()()()()()(])()([)()()()(])()([)()(])()([2?????????????????xvxvxvxuxvxuxvxuxvxuxvxuxvxuxvxuxvxu、差、積、商的導(dǎo)數(shù)并且有處也可導(dǎo)在點則它們的
2025-01-23 04:31
【摘要】一、基本導(dǎo)數(shù)公式二、高階導(dǎo)數(shù)第三節(jié)基本函數(shù)公式與高階導(dǎo)數(shù)一、基本函數(shù)公式基本初等函數(shù)公式(1)0();C'C?為常數(shù)2(7)(tan)sec;x'x?(5)(sin)cos;x'x?11(4)(log||),(ln|
2025-07-28 04:04
【摘要】導(dǎo)數(shù)的基本公式與運算法則(x?)?=?x?-1.(ax)?=axlna.(ex)?=ex.'0(cc?為任意常數(shù)).ln1)(logaxxa??.1)(lnxx??(sinx)?=cosx.(cosx)?=-sinx.(tanx)?=sec2x.(c
2025-07-28 05:40
【摘要】高階導(dǎo)數(shù)1、顯函數(shù)的高階導(dǎo)數(shù)(2-n階)2、隱函數(shù)和參數(shù)方程的2階導(dǎo)數(shù)一、顯函數(shù)高階導(dǎo)數(shù)的定義定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點為函數(shù)則稱存在即處可導(dǎo)在點的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxfxxfxfx??????????????記作
2025-05-17 06:01
【摘要】§高階導(dǎo)數(shù).),()(),()(它的可導(dǎo)性點的函數(shù),仍可以考察內(nèi)的作為內(nèi)可導(dǎo),則它的導(dǎo)函數(shù)在設(shè)xbaxfbaxfy??,)()(,)(,)(0000點的二階導(dǎo)數(shù)在點的導(dǎo)數(shù)為在且稱點二階可導(dǎo)在則稱點可導(dǎo)在若xxfyxxfyxxfyxxfy????????.)dd,dd,()(
2025-05-02 02:10
【摘要】一、高階導(dǎo)數(shù)的定義二、高階導(dǎo)數(shù)的求導(dǎo)法則三、小結(jié)思考題第三節(jié)高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義問題:變速直線運動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(
2024-09-03 12:37
【摘要】第二講微積分基本公式?內(nèi)容提要1.變上限的定積分;-萊布尼茲公式。?教學(xué)要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-19 01:35