【摘要】函數(shù)的最大(?。┲瞪仃P(guān)市田家炳中學(xué)范永祥一、教材分析本課是人教版教材《數(shù)學(xué)1》。本課時主要學(xué)習(xí)函數(shù)的最大(?。┲档母拍?,探索函數(shù)最大(?。┲登蠼夥椒ā1竟?jié)課是在學(xué)生學(xué)習(xí)了函數(shù)概念、單調(diào)性的基礎(chǔ)上所研究的函數(shù)的一個重要性質(zhì)。函數(shù)最大(?。┲档母拍钍茄芯烤唧w函數(shù)值域的依據(jù),對于學(xué)生進一步研究函數(shù)圖像性質(zhì),以及將來研究不等式問題有重要作用。函數(shù)最大(?。┲档难芯糠椒ㄒ簿?/span>
2025-04-19 23:39
【摘要】課題:3.8函數(shù)的最大值與最小值(二)教學(xué)目的:1.進一步熟練函數(shù)的最大值與最小值的求法;?、渤醪綍庥嘘P(guān)函數(shù)最大值、最小值的實際問題教學(xué)重點:解有關(guān)函數(shù)最大值、最小值的實際問題.教學(xué)難點:解有關(guān)函數(shù)最大值、最小值的實際問題.授課類型:新授課課時安排:1課時教具:多媒體、實物投影儀教學(xué)過程:一、復(fù)習(xí)引入::一般地
2025-06-21 23:34
【摘要】函數(shù)的最大值與最小值一、復(fù)習(xí)與引入f(x)在x0處連續(xù)時,判別f(x0)是極大(小)值的方法是:①如果在x0附近的左側(cè)右側(cè),那么,f(x0)是極大值;②如果在x0附近的左側(cè)右側(cè)
2024-10-22 11:51
【摘要】MaximumValue&MinimumValueofFunctionliiltif江西省臨川一中:游建龍江西省臨川一中:游建龍說教材說目標說教法說學(xué)法說過程說設(shè)計說教材說目標說教法說學(xué)法說過程目標制定教法選擇學(xué)法指導(dǎo)教學(xué)過程教材分析
2025-05-20 23:42
【摘要】§函數(shù)的最大值與最小值高三數(shù)學(xué)選修(Ⅱ)第三章導(dǎo)數(shù)與微分MaximumValue&MinimumValueofFunction實際問題如圖,有一長80cm寬60cm的矩形不銹鋼薄板,用此薄板折成一個長方體無蓋容器,要分別過矩形四個頂點處各挖去一個全等的小正方形,按加工要求,長方體的高不小
2024-11-14 00:27
【摘要】若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x的函數(shù),但此隱函數(shù)不易顯化.則稱此函數(shù)為隱函數(shù).第三節(jié)隱函數(shù)的導(dǎo)數(shù)和由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)一、隱函數(shù)的導(dǎo)數(shù)0),(?yxF
2024-08-12 16:24
【摘要】一、填空題(每題4分,共24分)1.(2020·吉林高二檢測)若函數(shù)f(x)=-x3+3x2+9x+a在區(qū)間[-2,-1]上的最大值為2,則它在該區(qū)間上的最小值為____.【解析】f′
2024-11-16 18:11
【摘要】熊老師初中數(shù)學(xué)教育工作室初中幾何中線段和(差)的最值問題一、兩條線段和的最小值?;緢D形解析:一)已知兩個定點:1、在一條直線m上,求一點P,使PA+PB最?。唬?)點A、B在直線m兩側(cè):(2)點A、B在直線同側(cè):A、A’是關(guān)于直線m的對稱點。2、在直線m、n上分別找兩點P、Q,使PA+PQ+QB最小
2025-06-29 07:50
【摘要】最大值、最小值問題一、最大值、最小值的求法二、應(yīng)用一、最值的求法oxyoxybaoxyabab.],[)(],[)(在上的最大值與最小值存在個導(dǎo)數(shù)為零的點,則可導(dǎo),并且至多有有限處上連續(xù),除個別點外處在若函數(shù)baxfbaxf步驟:;,比較大
2024-08-27 01:39
【摘要】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個極大值,記作y極大值=f(x0),x0是極大值點。如果f(x0)的值比x0附近所有各點的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個極小值。記作y極小值=f(x0),x0是極小值點
2024-11-23 13:08
【摘要】算法分析與設(shè)計實驗報告第一次實驗姓名學(xué)號班級時間地點工訓(xùn)樓309實驗名稱分治算法實驗(用分治法查找數(shù)組元素的最大值和最小值)實驗?zāi)康耐ㄟ^上機實驗,要求掌握分治算法的問題描述、算法設(shè)計思想、程序設(shè)計。實驗原理使用分治的算法,根據(jù)不同的輸入用例,能準確的輸出用例中的最大值與最小值。并計算出程序運行所需要的時間。程序
2025-04-19 23:42
【摘要】......初中幾何中線段和(差)的最值問題一、兩條線段和的最小值?;緢D形解析:一)、已知兩個定點:1、在一條直線m上,求一點P,使PA+PB最?。唬?)點A、B在直線m兩側(cè):
2025-03-27 12:33
【摘要】初中幾何中線段和(差)的最值問題一、兩條線段和的最小值?;緢D形解析:一)、已知兩個定點:1、在一條直線m上,求一點P,使PA+PB最小;(1)點A、B在直線m兩側(cè):(2)點A、B在直線同側(cè):A、A’是關(guān)于直線m的對稱點。2、在直線m、n上分別找兩點P、Q,使PA+PQ+QB最小。(1)兩個點都在直線
【摘要】上頁下頁返回第1頁第二、三節(jié)函數(shù)的單調(diào)性與極值、最大值與最小值一、函數(shù)單調(diào)性的判別法二、函數(shù)的極值及其求法三、函數(shù)的最大值和最小值第三章導(dǎo)數(shù)的應(yīng)用目錄后退主頁退出本節(jié)知識引入本節(jié)目的與要求本節(jié)重點
2024-08-12 17:50
【摘要】初中幾何中線段和(差)的最值問題一、兩條線段和的最小值?;緢D形解析:一)、已知兩個定點:1、在一條直線m上,求一點P,使PA+PB最??;(1)點A、B在直線m兩側(cè):(2)點A、B在直線同側(cè):A、A’是關(guān)于直線m的對稱點。2、在直線m、n上分別找兩點P、Q,使PA+PQ+QB最小。(1)兩個點都在直線