【摘要】......(差)的最值問題【知識(shí)依據(jù)】1.線段公理——兩點(diǎn)之間,線段最短;2.對(duì)稱的性質(zhì)——①關(guān)于一條直線對(duì)稱的兩個(gè)圖形全等;②對(duì)稱軸是兩個(gè)對(duì)稱圖形對(duì)應(yīng)點(diǎn)連線的垂直平分線;3.三角形兩邊之和大于第三邊;
2025-03-28 07:09
【摘要】初中幾何中線段和(差)的最值問題一、兩條線段和的最小值。基本圖形解析:一)、已知兩個(gè)定點(diǎn):1、在一條直線m上,求一點(diǎn)P,使PA+PB最小;(1)點(diǎn)A、B在直線m兩側(cè):(2)點(diǎn)A、B在直線同側(cè):2、在直線m、n上分別找兩點(diǎn)P、Q,使PA+PQ+QB最小。(1)兩個(gè)點(diǎn)都在直線外側(cè):
2025-03-27 12:33
【摘要】中考數(shù)學(xué)壓軸題解題策略線段和差最值的存在性問題解題策略2015年9月13日星期日專題攻略兩條動(dòng)線段的和的最小值問題,常見的是典型的“牛喝水”問題,關(guān)鍵是指出一條對(duì)稱軸“河流”(如圖1).三條動(dòng)線段的和的最小值問題,常見的是典型的“臺(tái)球兩次碰壁”或“光的兩次反射”問題,關(guān)鍵是指出兩條對(duì)稱軸“反射鏡面”(如圖2).兩條線段差的最大值問題,一般根據(jù)三角形的兩
【摘要】二次函數(shù)與線段和差問題例題精講:如圖拋物線y=ax2+bx+c(a≠0與x軸交于A,B(1,0),與y軸交于點(diǎn)C,直線y=12x-2經(jīng)過點(diǎn)A,,對(duì)稱軸為直線l,(1)求拋物線解析式。(2)求頂點(diǎn)D的坐標(biāo)與對(duì)稱軸l.(3)設(shè)點(diǎn)E為x軸上一點(diǎn),且AE=CE,求點(diǎn)E的坐標(biāo)。(4)設(shè)點(diǎn)G是y軸上的一點(diǎn),是否存在點(diǎn)G,使得GD+GB的值最小,若存在,求出G點(diǎn)坐標(biāo),若不存在,
2025-04-07 03:00
【摘要】幾何中線段和,差最值問題一、解決幾何最值問題的通常思路兩點(diǎn)之間線段最短;直線外一點(diǎn)與直線上所有點(diǎn)的連線段中,垂線段最短;三角形兩邊之和大于第三邊或三角形兩邊之差小于第三邊(重合時(shí)取到最值)是解決幾何最值問題的理論依據(jù),根據(jù)不同特征轉(zhuǎn)化是解決最值問題的關(guān)鍵.通過轉(zhuǎn)化減少變量,向三個(gè)定理靠攏進(jìn)而解決問題;直接調(diào)用基本模型也是解決幾何最值問題的高效手段.幾何最值問題中的基
2025-06-22 07:41
【摘要】垂線段最短與輔助圓三大模型::如圖,直線BC與直線外一點(diǎn)A,點(diǎn)A到直線BC的距離AD最短:如圖,在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(0,4),直線與軸、軸分別交于A、B,點(diǎn)M是直線AB上的一個(gè)動(dòng)點(diǎn),則PM長的最小值為。2.如圖,已知?OABC的頂點(diǎn)A、C分別在直線x=1和x=4上,O是坐標(biāo)原點(diǎn),則對(duì)角
2025-03-28 03:44
【摘要】第1頁共2頁【中考數(shù)學(xué)必備專題】中考模型解題系列之巧用軸對(duì)稱解線段和差最值一、單選題(共2道,每道30分),⊙O的半徑為2,點(diǎn)A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動(dòng)點(diǎn),則PA+PC的最小值為().B.C.D.
2024-08-23 14:38
【摘要】...... 二次函數(shù)中的最值問題重難點(diǎn)復(fù)習(xí)一般地,如果是常數(shù),,那么叫做的二次函數(shù).二次函數(shù)用配方法可化成:的形式的形式,得到頂點(diǎn)為(,),對(duì)稱軸是.,∴頂點(diǎn)是,對(duì)稱軸是直線.二次函數(shù)常用來解決最值
2025-03-27 12:30
【摘要】熊老師初中數(shù)學(xué)教育工作室初中幾何中線段和(差)的最值問題一、兩條線段和的最小值?;緢D形解析:一)已知兩個(gè)定點(diǎn):1、在一條直線m上,求一點(diǎn)P,使PA+PB最?。唬?)點(diǎn)A、B在直線m兩側(cè):(2)點(diǎn)A、B在直線同側(cè):A、A’是關(guān)于直線m的對(duì)稱點(diǎn)。2、在直線m、n上分別找兩點(diǎn)P、Q,使PA+PQ+QB最小
2025-06-29 07:50
【摘要】......初中幾何中線段和(差)的最值問題一、兩條線段和的最小值。基本圖形解析:一)、已知兩個(gè)定點(diǎn):1、在一條直線m上,求一點(diǎn)P,使PA+PB最??;(1)點(diǎn)A、B在直線m兩側(cè):
【摘要】中考?jí)狠S題精選典型例題講解 二次函數(shù)——?jiǎng)狱c(diǎn)產(chǎn)生的線段最值問題【例1】如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過A,B,C三點(diǎn)的拋物線的對(duì)稱軸為直線.(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);(2)點(diǎn)E是拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求當(dāng)AE+CE最小時(shí)點(diǎn)E的坐標(biāo);(3)點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),求當(dāng)PD+PC最小時(shí)點(diǎn)P的坐標(biāo);(4)
2025-03-27 06:23
【摘要】初中幾何中線段和(差)的最值問題一、兩條線段和的最小值。基本圖形解析:一)、已知兩個(gè)定點(diǎn):1、在一條直線m上,求一點(diǎn)P,使PA+PB最?。唬?)點(diǎn)A、B在直線m兩側(cè):(2)點(diǎn)A、B在直線同側(cè):A、A’是關(guān)于直線m的對(duì)稱點(diǎn)。2、在直線m、n上分別找兩點(diǎn)P、Q,使PA+PQ+QB最小。(1)兩個(gè)點(diǎn)都在直線
【摘要】最值問題“最值”問題大都?xì)w于兩類基本模型:Ⅰ、歸于函數(shù)模型:即利用一次函數(shù)的增減性和二次函數(shù)的對(duì)稱性及增減性,確定某范圍內(nèi)函數(shù)的最大或最小值Ⅱ、歸于幾何模型,這類模型又分為兩種情況:(1)歸于“兩點(diǎn)之間的連線中,線段最短”。凡屬于求“變動(dòng)的兩線段之和的最小值”時(shí),大都應(yīng)用這一模型。(2)歸于“三角形兩邊之差小于第三邊”凡屬于求“變動(dòng)的兩線段之差的最大值”時(shí),大
2025-04-07 03:48
【摘要】初中幾何最值問題例題精講一、三點(diǎn)共線1、構(gòu)造三角形【例1】在銳角中,AB=4,BC=5,∠ACB=45°,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到△A1BC1.點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)過程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,求線段EP1長度的最大值與最小值.【鞏固】以平面上一點(diǎn)O為直角頂點(diǎn),
【摘要】幾何最值問題(講義)l解決幾何最值問題的通常思路_______________________,_______________________,__________________是解決幾何最值問題的理論依據(jù),___________________________是解決最值問題的關(guān)鍵.通過轉(zhuǎn)化減少變量,向三個(gè)定理靠攏進(jìn)而解決問題;直接調(diào)用基本模型也是解決幾何最值問題的高效手段.
2025-03-27 12:12