【摘要】成都戴氏教育達州西外校區(qū)初一數(shù)學(xué)精品班戴氏教育達州西外校區(qū)名校沖刺戴氏教育溫馨提醒:暑假兩個月是學(xué)習(xí)的最好時機,可以在兩個月里,復(fù)習(xí)舊知識,學(xué)習(xí)新知識,承上,還能啟下。在這個炎熱的假期,祝你學(xué)習(xí)輕松愉快。初一典型幾何證明題1、已知:AB=4,AC=2,D是BC中點,AD是整數(shù),求AD13教師寄語:如果想要看
2025-03-27 12:29
【摘要】初一幾何典型例題1、如圖,∠AOB=90°,OM平分∠AOB,將直角三角尺的頂點P在射線OM上移動,兩直角分別與OA,OB相較于C,D兩點,則PC與PD相等嗎?試說明理由。PC=PD證明:作PE⊥OA于點E,PF⊥OB于點F∵OM是角平分線∴PE=PF∠EPF=90°∵∠CPD=90°∴∠CPE=∠DPF∵∠PEC=∠PFD=
2025-03-30 01:22
【摘要】幾何綜合題一圖形與證明中要求:會用歸納和類比進行簡單的推理。圖形的認識中要求:會運用幾何圖形的相關(guān)知識和方法(兩點之間的距離,等腰三角形、等邊三角形、直角三角形的知識,全等三角形的知識和方法,平行四邊形的知識,矩形、菱形和正方形的知識,直角三角形的性質(zhì),圓的性質(zhì))解決有關(guān)問題;能運用三角函數(shù)解決與直角三角形相關(guān)的簡單實際問題;能綜合運用幾何知識解決與圓周角有關(guān)的問題;能解決與切線有關(guān)
2025-04-07 03:01
【摘要】第一篇:初一幾何證明題 初一幾何證明題 一、1)D是三角形ABC的BC邊上的點且CD=AB,角ADB=角BAD,AE是三角形ABD的中線,求證AC=2AE。 (2)在直角三角形ABC中,角C=9...
2024-10-29 02:17
【摘要】第一篇:初一幾何證明題 三角形 1、已知ΔABC,AD是BC邊上的中線。E在AB邊上,ED平分∠ADB。F在AC邊上,F(xiàn)D平分∠ADC。求證:BE+CF>EF。 1、已知ΔABC,BD是AC邊上...
2024-10-24 20:15
【摘要】第一篇:初一幾何證明題 初一《幾何》復(fù)習(xí)題2002--6—29姓名:一.填空題 1.過一點 2.過一點,有且只有直線與這條直線平行; 3.兩條直線相交的,它們的交點叫做;4.直線外一點與直線上...
2024-10-24 21:17
【摘要】立體幾何??甲C明題匯總考點:線面垂直,面面垂直的判定2、如圖,已知空間四邊形中,,是的中點。求證:(1)平面CDE;(2)平面平面??键c:線面平行的判定A1ED1C1B1DCBA3、如圖,在正方體中,是的中點,求證:平面??键c:線面垂直的判定4、已知中,面,,求證:面.
2025-03-28 06:44
【摘要】1、如圖,四邊形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,試問BE與DF平行嗎?為什么? 2、如圖,△ABC中,∠A=36°,∠ABC=40°,BE平分∠ABC,∠E=18。試證明CE平分∠ACD.3、已知:如圖∠1=∠2,∠C=∠D,那么∠A=∠F嗎?試說明理由4、如圖AB∥CD
【摘要】初一幾何證明題,AD∥BC,∠B=∠D,求證:AB∥CD?!虯B,EF⊥AB,∠1=∠2,求證:∠AGD=∠ACB。3.已知∠1=∠2,∠1=∠3,求證:CD∥OB。4.如圖,已知∠1=∠2,∠C=∠CDO,求證:CD∥OP。5.已知∠1=
【摘要】第一篇:初一幾何證明題答案 初一幾何證明題答案 圖片發(fā)不上來,看參考資料里的1如圖,AB⊥BC于B,EF⊥AC于G,DF⊥AC于D,BC=DF。求證:AC=EF。 2已知AC平分角BAD,CE垂...
2024-11-16 05:06
【摘要】第一篇:初一幾何證明題練習(xí) 初一下學(xué)期幾何證明題練習(xí) 1、如圖,∠B=∠C,AB∥EF,試說明:∠BGF=∠C。(6 解:∵∠B=∠C ∴AB∥CD()又∵AB∥EF() D ∴ ∥)∴...
2024-10-29 01:07
【摘要】典型例題一例1橢圓的一個頂點為,其長軸長是短軸長的2倍,求橢圓的標準方程.分析:題目沒有指出焦點的位置,要考慮兩種位置.解:(1)當為長軸端點時,,,橢圓的標準方程為:;(2)當為短軸端點時,,,橢圓的標準方程為:;說明:橢圓的標準方程有兩個,給出一個頂點的坐標和對稱軸的位置,是不能確定橢圓的橫豎的,因而要考慮兩種情況.典型例題二例2一個
2025-03-28 04:50
【摘要】1.直線方程(一)直線的位置關(guān)系1.已知集合,,若,則的值為____________________2.若直線與直線平行,則.3.已知m?{-1,0,1},n?{-1,1},若隨機選取m,n,則直線恰好不經(jīng)過第二象限的概率是.4.已知實數(shù),滿足約束條件則的最大值為.5.已知兩條直線的斜率分別為,設(shè)
2025-03-28 01:25
【摘要】教師:李老師學(xué)生:年級:科目:數(shù)學(xué)時間:2012年月日內(nèi)容:初中幾何證明技巧(分類)證明兩線段相等。。。。。。。。*(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。*。
2025-03-27 12:33
【摘要】第一篇:初一上冊幾何證明題 初一上冊幾何證明題 ,∠ACB=90°,AC=BC,E是BC邊上的一點,連接AE,過C作CF⊥AE于F,過B作BD⊥BC交CF的延長線于D,試說明:AE=CD。 滿意...
2024-11-16 04:21