【摘要】r三角形全等的判定專題訓練題1、如圖(1):AD⊥BC,垂足為D,BD=CD.求證:△ABD≌△ACD.2、如圖(2):AC∥EF,AC=EF,AE=BD.求證:△ABC≌△EDF.3、如圖(3):DF=CE,AD=BC,∠D=∠C.求證:△AED≌△BFC.
2025-03-27 07:41
【摘要】第一篇:全等三角形證明題 全等三角形證明題 1B E 5.如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE,DG. 求證:BE=DG. AB GF AB∥ED,AB=C...
2024-10-25 06:50
【摘要】完美WORD格式全等三角形證明題精選 一.解答題(共30小題)1.四邊形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分別為E、F.(1)求證:△ADE≌△CBF;(2)若AC與BD相交于點O,求證:AO=CO.2.如圖
【摘要】第一篇:初一全等三角形證明題 初二下期三角形全等證明題練習 一、填空題 ,已知AB⊥BD于B,ED⊥BD于D,AB=CD,BC=DE,則∠ACE= C 第1題 ① ② ③ BC (...
2024-10-25 05:59
【摘要】第一篇:全等三角形(基礎證明題) 全等三角形——基礎證明 “如果??”“那么??”的形式,指出它的題設和結(jié)論,并寫出他們的逆命題.(1)同位角相等,兩直線平行; 解:如果____________...
2024-10-25 06:26
【摘要】第一篇:全等三角形證明題精選 :如圖,△ABC和△A'B'C'中,∠BAC=∠B'A'C',∠B=∠B',AD、A'D'分別是∠BAC、∠B'A'C'的平分線,且AD=A'D'。求證:△ABC≌△A...
2024-10-25 06:10
【摘要】第一篇:全等三角形基礎證明題 全等三角形——基礎證明 “如果??”“那么??”的形式,指出它的題設和結(jié)論,并寫出他們的逆命題.(1)同位角相等,兩直線平行; 解:如果______________...
2024-10-25 05:24
【摘要】全等三角形判定專題一(證明題)1、如圖,AC=AD,BC=BD,求證:AB平分∠CAD.2如圖,已知:點B、F、C、E在一條直線上,F(xiàn)B=CE,AC=DF.∠A=∠D=90°;求證:AB∥DE.3、如圖,已知AB=AC,AD=AE.求證:BD=CE.4如圖,在△ABC中,D是∠BAC的平分線上一點,BD⊥AD于D
2025-03-27 07:39
【摘要】全等三角形的經(jīng)典證明題(一)1.已知:如圖,點B,E,C,F在同一直線上,AB∥DE,且AB=DE,BE=:AC∥DF.2.如圖,已知:AD是BC上的中線,且DF=DE.求證:BE∥CF.3.如圖,已知AB=DE,BC=EF,AF=DC。求證:∠EFD=∠BCA,已知在△ABC中,F(xiàn)為AC中點,E為AB上一點,D為EF延長線上
2025-04-11 12:26
【摘要】第一篇:全等三角形證明題1 證明三角形全等專項練習試題 ,可以證明它們?nèi)鹊氖牵ǎ? (A)兩個角分別對應相等,一邊對應相等(B)兩條邊對應相等,且第三邊上的高也相等(C)兩條邊對應相等,且其中...
2024-10-25 06:45
【摘要】第一篇:全等三角形證明題09 全等三角形證明題09⑴已知如圖,△ABC中,∠A=90°,AB=AC,AO為BC上的中線. ①求證:OA=OB=OC. ②設點M在AC上移動,點N在AB上移動,連結(jié)...
2024-10-25 06:46
【摘要】第一篇:全等三角形的經(jīng)典證明題 全等三角形的經(jīng)典證明題 1、如圖,已知AB=DE,BC=EF,AF=DC。 求證:∠EFD=∠BCA 2、如圖,已知:AD是BC上的中線,且DF=DE. 求證...
2024-10-25 05:57
【摘要】第一篇:全等三角形證明題專項練習 全等三角形證明題專項練習1 姓名: 1、(1)全等三角形有哪些性質(zhì):____________________________________; (2)兩個三角...
2024-10-25 06:42
【摘要】全等三角形證明題專項練習60題(有答案) 1.已知如圖,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度數(shù).∠BAC= _________?。?.已知:如圖,四邊形ABCD中,AB∥CD,AD∥BC.求證:△ABD≌△CDB. 3.如圖,點E在△ABC外部,點D在邊BC上,DE交AC于
2025-06-26 03:58
【摘要】全等三角形的判定證明題訓練考點提煉整理1、認識全等圖形中的對應關系,理解全等概念。全等三角形:能夠完全重合的兩個三角形稱為全等三角形全等符號:“≌”,讀作“全等于”2、掌握全等三角形的性質(zhì):①全等三角形的對應邊相等。②全等三角形的對應角相等。3、理解全等三角形的三個判定公理和一個判定定理。①角邊角公理:有兩角和它們的夾邊對應相等的兩個三角形全等(ASA)。
2025-03-27 07:40