【摘要】().,,.,.,.上冊(cè)我們研究了一元函數(shù)一個(gè)自變量的函數(shù)及其微分但在許多實(shí)際問題中常常會(huì)遇到一個(gè)變量依賴于多個(gè)變量的情形這就提出了多元函數(shù)的概念以及多元函數(shù)的微分和積分問題本章將在一元函數(shù)
2025-01-22 10:12
【摘要】第七講不定積分的分布積分法/有理函數(shù)積分法1分部積分法2幾類特殊函數(shù)的不定積分問題???dxxex解決思路利用兩個(gè)函數(shù)乘積的求導(dǎo)法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvud
2024-08-16 10:21
【摘要】第八章多元函數(shù)微分法及其應(yīng)用上冊(cè)研究了一元函數(shù)微分法,利用這些知識(shí),我們可以求直線上質(zhì)點(diǎn)運(yùn)動(dòng)的速度和加速度,也可以求曲線的切線的斜率,可以判斷函數(shù)的單調(diào)性和極值、最值等,但這遠(yuǎn)遠(yuǎn)不夠,因?yàn)橐辉瘮?shù)只是研究了由一個(gè)因素確定的事物。一般地說,研究自然現(xiàn)象總離不開時(shí)間和空間,確定空間的點(diǎn)需要三個(gè)坐標(biāo),所以一般的物理量常常依賴于四個(gè)變量,在有些問題中還需要考慮更多的變量,這樣就有必要研究多
2025-06-21 08:16
【摘要】定積分的換元積分法與分部積分法教學(xué)目的:掌握定積分換元積分法與分部積分法 難 點(diǎn):定積分換元條件的掌握重 點(diǎn):換元積分法與分部積分法由牛頓-萊布尼茨公式可知,定積分的計(jì)算歸結(jié)為求被積函數(shù)的原函數(shù).在上一章中,我們已知道許多函數(shù)的原函數(shù)需要用換元法或分部積分法求得,因此,換元積分法與分部積分法對(duì)于定積分的計(jì)算也是非常重要的.1.定積分換元法定理假設(shè)(1)函數(shù)在
2024-09-02 18:59
【摘要】問題???dxxex解決思路利用兩個(gè)函數(shù)乘積的求導(dǎo)法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvudv????分部積分公式第三節(jié)分部積分法容易計(jì)算.例1求積分.
2025-07-25 11:11
【摘要】1主講教師:王升瑞高等數(shù)學(xué)第二十七講2分部積分法分部積分法第三章第三節(jié)3由上節(jié)可知,基礎(chǔ)上得到的,積函數(shù)是由兩個(gè)不同類型函數(shù)的乘積時(shí),如:????xdxxxdxxdxxexdxxxlnarctansin等,
2024-11-06 17:59
【摘要】上頁下頁鈴結(jié)束返回首頁1第四章不定積分第三節(jié)不定積分的分部積分法主要內(nèi)容:分部積分法上頁下頁鈴結(jié)束返回首頁2第三節(jié)分部積分法與它們對(duì)應(yīng)的是上節(jié)的基本積分
2024-10-22 08:38
【摘要】設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有????bababavduuvudv.定積分的分部積分公式推導(dǎo)??,vuvuuv?????,)(babauvdxuv???,??????bababadxvudxvuuv.?????bababavduuvud
2025-04-26 05:00
【摘要】YANGZHOUUNIVERSITY二、定積分的分部積分法第三節(jié)不定積分機(jī)動(dòng)目錄上頁下頁返回結(jié)束一、定積分的換元法換元積分法分部積分法定積分換元積分法分部積分法定積分的換元法和分部積分法第五章YANGZHO
2025-07-21 06:33
【摘要】第二節(jié)換元積分法本節(jié)內(nèi)容提要一、第一類換元積分法(湊微分法)二、第二類換元積分法教學(xué)目的:使生熟練掌握湊微分法求不定積分、掌握第二類換元積分法中的根式置換法,了解三角置換法求不定積分重點(diǎn):湊微分法、根式置換法求不定積分難點(diǎn):湊微分法求不定積分教學(xué)方法:啟發(fā)式教
2024-08-16 11:03
【摘要】第八章多元函數(shù)微分法及其應(yīng)用(A)1.填空題(1)若在區(qū)域上的兩個(gè)混合偏導(dǎo)數(shù),,則在上,。(2)函數(shù)在點(diǎn)處可微的條件是在點(diǎn)處的偏導(dǎo)數(shù)存在。(3)函數(shù)在點(diǎn)可微是在點(diǎn)處連續(xù)的條件。2.求下列函數(shù)的定義域(1);(2)3.求下列各極限(1);(2);(3)4.設(shè),求及。5.
2025-06-10 17:11
【摘要】定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導(dǎo)數(shù);(3)當(dāng)t在區(qū)間],[??上變化時(shí),)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則有dtttfdxxfba????????)()]([)(.
2025-01-17 14:36
【摘要】定積分的分部積分公式推導(dǎo)一、分部積分公式例1◆定積分的分部積分法解解原式原式已積出的部分要求值定積分的分部積分法已積出的部分要求值解解原式原式解解原式原式所以所以分部積分過程:解(4)
2025-05-02 00:02
【摘要】定積分也可以象不定積分一樣進(jìn)行分部積分,設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有??????bababavduuvudv.定積分的分部積分公式推導(dǎo)??,vuvuuv???????,)(babauvdxuv??
2025-05-13 02:15
【摘要】一、第一換元積分法(湊微分法)直接驗(yàn)證得知,計(jì)算方法正確.例1求xxde3?.解被積函數(shù)x3e是復(fù)合函數(shù),不能直接套用公式,我們可以把原積分作下列變形后計(jì)算:???Cxxxede????xuxxxx3)d(3e31de33令???C
2024-08-12 15:27