【摘要】目錄上頁下頁返回結束二、第二類換元法第二節(jié)一、第一類換元法換元積分法第四章目錄上頁下頁返回結束第二類換元法第一類換元法基本思路設,)()(ufuF??可導,CxF?)]([?)(d)(xuuuf????)()
2025-01-18 16:55
【摘要】定理假設(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導數(shù);(3)當t在區(qū)間],[??上變化時,)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則有dtttfdxxfba????????)()]([)(.
2025-01-17 14:36
【摘要】第二節(jié)換元積分法本節(jié)內(nèi)容提要一、第一類換元積分法(湊微分法)二、第二類換元積分法教學目的:使生熟練掌握湊微分法求不定積分、掌握第二類換元積分法中的根式置換法,了解三角置換法求不定積分重點:湊微分法、根式置換法求不定積分難點:湊微分法求不定積分教學方法:啟發(fā)式教
2024-08-16 11:03
【摘要】?xxd2cosCx?2sin解決方法將積分變量換成令xt2???xxd2costtdcos21??Ct??sin21Cx??2sin21????x2sinx2cos????xxdcosCx?sinx2cos2.2x因為?xd)d(221x
2024-08-16 07:16
【摘要】定積分的換元積分法與分部積分法教學目的:掌握定積分換元積分法與分部積分法 難 點:定積分換元條件的掌握重 點:換元積分法與分部積分法由牛頓-萊布尼茨公式可知,定積分的計算歸結為求被積函數(shù)的原函數(shù).在上一章中,我們已知道許多函數(shù)的原函數(shù)需要用換元法或分部積分法求得,因此,換元積分法與分部積分法對于定積分的計算也是非常重要的.1.定積分換元法定理假設(1)函數(shù)在
2024-09-02 18:59
【摘要】定積分也可以象不定積分一樣進行分部積分,設函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導數(shù),則有??????bababavduuvudv.定積分的分部積分公式推導??,vuvuuv???????,)(babauvdxuv??
2025-05-13 02:15
【摘要】一、第一換元積分法(湊微分法)直接驗證得知,計算方法正確.例1求xxde3?.解被積函數(shù)x3e是復合函數(shù),不能直接套用公式,我們可以把原積分作下列變形后計算:???Cxxxede????xuxxxx3)d(3e31de33令???C
2024-08-12 15:27
【摘要】第二節(jié)換元積分法從不定積分的定義可以看出,求不定積分的問題實質上就是求原函數(shù)的問題,而能直接求出原函數(shù)的函數(shù)畢竟是少數(shù)tan??cos?(1)dxxdxxxdxxx???????如本節(jié)介紹了利用換元的思想求下不定積分的兩種方法.第一換元法和第二換元法.(一或第湊一換元法微分法)
2025-07-23 21:13
【摘要】換元積分法?第一類換元積分法?第二類換元積分法?重點是思路與想法問題?xdx2cos,2sinCx??解決方法利用復合函數(shù),設置中間變量.過程令xt2?,21dtdx???xdx2cosdtt??cos21Ct??sin21.2sin21Cx??一、第一類換元法
2024-08-16 00:08
【摘要】第二類換元積分法?二、例題分類講解?一、第二類換元積分法思考:求??dxx11該不定積分不能直接積分,也不屬于常見的湊微分法的類型。該積分矛盾在于被積函數(shù)含有根式,為了去掉根號,我們可以做變量代換,令tx?第二換元積分法解令tx?則2tx?tdtd
2024-08-16 15:45
【摘要】2問題?xdx2cos,2sinCx??解決方法利用復合函數(shù),設置中間變量.過程令xt2?,21dtdx???xdx2cosdtt??cos21Ct??sin21.2sin21Cx??一、第一類換元法3在一般情況下:設),()(ufuF??則.)()(???C
2024-10-06 20:47
【摘要】1主講教師:王升瑞高等數(shù)學第二十七講2分部積分法分部積分法第三章第三節(jié)3由上節(jié)可知,基礎上得到的,積函數(shù)是由兩個不同類型函數(shù)的乘積時,如:????xdxxxdxxdxxexdxxxlnarctansin等,
2024-11-06 17:59
【摘要】問題cos2xdx?sin2,xC??解決方法利用復合函數(shù),設置中間變量.過程令2ux?1,2dxdu??cos2xdx?1cos2udu??1sin2uC??.2sin21Cx??一、第一類換元法2ux?du??2udxdx??
2025-07-28 16:36
【摘要】分部積分法1分部積分法分部積分公式例題小結思考題作業(yè)integrationbyparts第4章定積分與不定積分分部積分法2??xxxde解決思路利用兩個函數(shù)乘積的求導法則.vuvuuv?????)(vuuvvu?????)(???xv
2025-02-24 16:11
【摘要】定積分的分部積分公式推導一、分部積分公式例1◆定積分的分部積分法解解原式原式已積出的部分要求值定積分的分部積分法已積出的部分要求值解解原式原式解解原式原式所以所以分部積分過程:解(4)
2025-05-02 00:02