freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

計(jì)算力學(xué)課堂教學(xué)課件第2章(參考版)

2024-12-11 12:13本頁(yè)面
  

【正文】 3. 面積坐標(biāo)微積分運(yùn)算 )(2 1 ycxbaAL iiii ???由 有: ,2 AbxL ii ???AcyL ii2???),( mji???xxLLii ????xLLjj ?????xLLmm ??????????????????????mmjjiibLbLbLA21???y yLLii ????yLLjj ?????yLLmm ??????????????????????mmjjiicLcLcLA21微分運(yùn)算 ( ) 積分運(yùn)算 ( 1)面積坐標(biāo) Li、 Lj、 Lm的冪函數(shù)在三角形全面積上的積分: d x d yLLL cmbjA ai??Acbacba 2)!2(! ! !???? ( ) ( 2)面積坐標(biāo) Li、 Lj、 Lm的冪函數(shù)在三角形某一邊( ij)上的積分: dSLLl bjai? lba ba )!1( ! ! ???( ) ,0?? dSLLl cmai 0?? dSLLlcmbj )0( ?mL?如: d x d yLA i?? A2)!2022(!0 !0 !1???? 3A?d x d yLA i?? 2 A2)!2022(!0 !0 !2????6A?d x d yLLA ji?? A2)!2022(!0 !1 !1???? 12A?4. 面積坐標(biāo)給出的三角形單元的插值函數(shù) ( 1) 線性單元 3節(jié)點(diǎn)三角形單元 01?L02?L03?L1 2 3 (1,0,0) (0,1,0) (0,0,1) ,11 LN ? ,22 LN ?33 LN ?ii LN ? ? ?3,2,1?i ( ) ( 2) 二次單元 6節(jié)點(diǎn)三角形單元 1 2 3 (1,0,0) (0,1,0) (0,0,1) 4 5 6 ?????? 21,0,21?????? 21,21,0?????? 0,21,21211?L012 1 ??L212 ?L012 2 ??L213 ?L012 3 ??L3個(gè)角點(diǎn): ?1N1L )12( 1 ?Lk將 1節(jié)點(diǎn)的面積坐標(biāo): L1=1代入 )112(11 ????? kN 1?求得: 1?k)12( 111 ?? LLN所求 N1 為 同理: )12( 222 ?? LLN)12( 333 ?? LLN1 2 3 (1,0,0) (0,1,0) (0,0,1) 4 5 6 ?????? 21,0,21?????? 21,21,0?????? 0,21,2103?L01?L02?L3個(gè)中點(diǎn): ?4N 1L 2Lk將 4節(jié)點(diǎn)的坐標(biāo): L1= L2 =1/2 代入 21214 ??? kN1?求得: 4?k214 4 LLN ?所求 N4 為 ?5N 2L3Lk將 4節(jié)點(diǎn)的坐標(biāo): L2= L3 =1/2 代入 21215 ??? kN 1?求得: 4?k325 4 LLN ?所求 N5 為 同理: 136 4 LLN ?136 4 LLN ?綜合得: )12( 111 ?? LLN)12( 222 ?? LLN)12( 333 ?? LLN214 4 LLN ?325 4 LLN ?)12( ?? iii LLN)3,2,1( ?i( ) 1 2 3 (1,0,0) (0,1,0) (0,0,1) 4 5 6 ?????? 21,0,21?????? 21,21,0?????? 0,21,2103?L01?L02?L( 3) 三次單元 10節(jié)點(diǎn)三角形單元 1 2 3 4 5 6 7 8 9 10 013 1 ??L023 1 ??L013 2 ??L023 2 ??L013 3 ??L023 3 ??L01?L02?L03?L)23)(13(21 1111 ??? LLLN)23)(13(21 2222 ??? LLLN)23)(13(21 3333 ??? LLLN)13(29 1214 ?? LLLN)13(29 2215 ?? LLLN)13(29 2326 ?? LLLN)13(29 3327 ?? LLLN)13(29 3138 ?? LLLN)13(29 1139 ?? LLLN32110 27 LLLN ?1 2 3 4 5 6 7 8 9 10 013 1 ??L023 1 ??L013 2 ??L023 2 ??L023 3 ??L01?L02?L03?L5. 采用面積坐標(biāo)時(shí),單元矩陣的計(jì)算 單元?jiǎng)偠染仃? ePt d x d yeΩeb fNP ??????????????yxfff—— 體力向量 ? ?? eΩe t d x d yk DBB ???eΩsrrs t d xd yk DBB單元等效結(jié)點(diǎn)載荷矩陣 ek???????iyixib PPP ??????????????eΩ yxii t d x d yffNN 00體力引起: t d SeSeS TNP ???? ???????yxTTT—— 面力向量 ???????iyixiS PPP ??????????????eSyxii t d STTNN? 0 0邊界面力引起: d x d yLLL cmbjA ai?? Acbacba 2)!2(! ! !????( ) dSLLl bjai? lbaba)!1( ! !???( ) 例: ( 1)均質(zhì)等厚單元的自重 ?—— 單位體積的重量(容重),沿 y 負(fù)方向。 ( 5) mji LLL ,為三角單元的 局部坐標(biāo) 常數(shù)?i j m P (x,y) Ai Am Aj (xi,yi) (xj,yj) (xm,ym) 0?iL0?jL0?mL(1,0,0) (0,1,0) (0,0,1) i j m P (x,y) Ai di Am Aj 0?iL0?jL0?mL(1,0,0) (0,1,0) (0,0,1) l 2. 面積坐標(biāo)與直角坐標(biāo)的關(guān)系 Ai 的值: mmjjiyxyxyxA11121?? )(21 mjmj xyyx ?? ?yxxxyy jmmj )()( ????)(21 ycxbaA iiii ???iaibicAAL ii ? )(21 ycxbaA iii ???),( yxN i?( ) ( ) AAL jj ? )(21 ycxbaA jjj ??? ),( yxN j?AAL mm ? )(21 ycxbaA mmm ???),( yxN m??????????????????????????????yxcbacbacbaALLLmmmjjjiiimji 121( ) 用整體坐標(biāo) x、 y 表示面積坐標(biāo) Li、 Lj、 Lm。 其精度高于 6節(jié)點(diǎn)的三角形單元。 1 2 3 4 5 6 7 8 9 10 10節(jié)點(diǎn) 三角形單元 2. 三次單元: 10 節(jié)點(diǎn)三角形單元 其中: 49 節(jié)點(diǎn)為三角形三邊的三分點(diǎn), 10結(jié)點(diǎn)為三角形的中點(diǎn)。 24321 xyxu ???? ????265 yxy ?? ??210987 xyxv ???? ????21211 yxy ?? ??單元位移模式: ????????vuLLuε應(yīng)變與應(yīng)力向量: D L uD εσ ??應(yīng)變、應(yīng)力 —— 線性分布 —— 協(xié)調(diào)單元 滿足完備性; 滿足協(xié)調(diào)性。 矩形單元的優(yōu)點(diǎn): ( 1)插值函數(shù)(形函數(shù))容易構(gòu)造; ( 2)單元矩陣 ke、 Pe 積分求解方便。 7. 單元等效結(jié)點(diǎn)載荷矩陣 ePt d x d yeΩeb fNP ???t d SeSeS TNP ????( 1)體積力引起的: ?
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1