【正文】
這節(jié)課是我結(jié)合自身的教學(xué)實踐,研究學(xué)生,一堂真實的教學(xué)案例。)生:認真觀察,發(fā)現(xiàn)錯誤,及時糾正、補充、評價師:在一邊輔導(dǎo)和幫助,對出現(xiàn)的問題及時糾正,最后歸納疑點和難點,再板書和講解。c.明晰例題的解題思路,總結(jié)解題注意點及易錯點。加油??!學(xué)習(xí)指導(dǎo)完成P109的“探究”填空,再次認真觀察等式左邊多項式和右邊的結(jié)果有什么特征,嘗試用自己的語言描述。(三)情感態(tài)度與價值觀培養(yǎng)學(xué)生推理能力,計算能力和良好的探究意識,逐步形成主動探究的習(xí)慣,通過小組合作交流增強協(xié)作精神。(2)25a4+10a2+1(3)(m+n)24(m+n)+4(教師強調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯點,及時糾正)+16y4分解因式(本題用了兩次乘法公式,難度稍大,教師要鼓勵學(xué)生大膽嘗試,敢于創(chuàng)新)將乘法公式反過來就得到多項式因式分解的公式。收獲3:感受到數(shù)形結(jié)合的數(shù)學(xué)思想在數(shù)學(xué)中的作用.活動目的:通過對一堂課的歸納與總結(jié),鞏固學(xué)生對完全平方公式的認識,體會數(shù)學(xué)思想的精妙.第十一環(huán)節(jié):布置作業(yè):完全平方公式教案15教學(xué)目標(biāo)使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點。②(4x+)2解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9②(4x+)2=(4x)2+2?????(4x)+()2=16x2+2xy+活動目的:在前幾個環(huán)節(jié)中,學(xué)生對完全平方公式已經(jīng)有了感性認識,通過本環(huán)節(jié)的講解以及下一環(huán)節(jié)的練習(xí),使學(xué)生逐步經(jīng)歷認識——模仿——.第八環(huán)節(jié):隨堂練習(xí)活動內(nèi)容:計算:①。針對這幾種結(jié)果都將a=1代入計算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗證?活動目的:在很多學(xué)生的頭腦中,認為兩數(shù)和的完全平方與兩數(shù)的平方和等同,即:(a+2)2=a2+22,如果不將這種定式思維_就很難建立起一個正確的概念。同時在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生經(jīng)歷了很多探究學(xué)習(xí)的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力.二、教學(xué)目標(biāo)知識與技能:(1)讓學(xué)生會推導(dǎo)完全平方公式,并能進行簡單的應(yīng)用.(2)了解完全平方公式的幾何背景.數(shù)學(xué)能力:(1)由學(xué)生經(jīng)歷探索完全平方公式的過程,進一步發(fā)展學(xué)生的符號感與推理能力.(2)發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.情感與態(tài)度:將學(xué)生頭腦中的前概念暴露出來進行分析,避免形成教學(xué)上的“相異構(gòu)想”.三、教學(xué)重難點教學(xué)重點:完全平方公式的推導(dǎo)。對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.二、做一做鞏固新知例1計算1.( x y )(3 x y) 2.(10a b c )(5a bc)3.(2x y) (7xy )(14 x y ) 4.(2a+b) (2a+b) 學(xué)生活動:,首先確定它們的系數(shù),把系數(shù)的商作為商的系數(shù),其次確定相同的字母,在被除式中出現(xiàn)的字母作為商中可能含有的字母,相同字母的指數(shù)之差作為商式中對應(yīng)字母的指數(shù),只在被除式中含有的字母指數(shù)不變,(1)(2)題對照法則進行,第(3)(4)題先把(2a+b)看作一個整體 (一個字母)相除,:解: 1.( x y )(3 x y) 2.(10a b c )(5a bc)=( 3)x y =(105)a b c = y =2ab c 3.(2x y) (7xy )(14 x y ) 4.(2a+b) (2a+b) =8x y (7xy )(14 x y ) =(2a+b) =56x y (14 x y ) =(2a+b) =4x y =4a +4ab+b三、隨堂練習(xí)P40 1學(xué)生活動:讓四名同學(xué)到黑板板演,其余同學(xué)在練習(xí)本上計算,同伴可交流,師生共同訂正.四、小結(jié):。(2)兩個平方項符號永遠為正。②(yx)2=。等于它們平方的和,加上它們乘積的兩倍(3)三項系數(shù)的特點(特別是符號的特點)。充分利用動手實踐的機會,盡可能增加教學(xué)過程的趣味性,強調(diào)學(xué)生的動手操作和主動參與,通過豐富多彩的集體討論、小組活動,以合作學(xué)習(xí)促進自主探究。5教育理念和教學(xué)方式、積極互動、共同發(fā)展的過程。:經(jīng)歷由一般的多項式乘法向乘法公式過渡的探究過程,進一步培養(yǎng)學(xué)生歸納總結(jié)的能力,并給公式的應(yīng)用打下堅實的基礎(chǔ)。,依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。△)=□2177。學(xué)習(xí)難點:掌握完全平方公式的結(jié)構(gòu)特征?!郞E⊥OF(垂直定義).三、課堂練習(xí):平行于同一條直線的兩條直線平行.兩條平行線被第三條直線所截,同位角的平分線互相平行.四、歸納小結(jié) 主要通過學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從知識、技能、數(shù)學(xué)思想方法等方面加以歸納,有利于學(xué)生掌握、運用知識.然后見投影儀.五、布置作業(yè)課本P143(2),7.六、課后思考:垂直于同一條直線的兩條直線的位置關(guān)系怎樣?兩條平行線被第三條直線所截,內(nèi)錯角的平分線位置關(guān)系怎樣?兩條平行線被第三條直線所截,同旁內(nèi)角的平分線位置關(guān)系怎樣?完全平方公式教案10學(xué)習(xí)目標(biāo):經(jīng)歷探索完全平方公式的過程,發(fā)展學(xué)生觀察、交流、歸納、猜測、驗證等能力。利用完全平方公式計算:(1)(x+6)2 (2)(a+2b)2 (3)(3st)2[來源:](四)鞏固練習(xí)利用完全平方公式計算:A組:(1)( x+ y)2 (2)(2m+5n)2(3)(2a+5b)2 (4)(4p2q)2B組:(1)( x y2) 2 (2)()2(3)( a+5b)2 (4)( x y)2C組:(1)1012 (2)542 (3)9972(五)小結(jié)與反思我的收獲:我的疑惑:(六)達標(biāo)檢測(ab)2=a2+b2+ .(a+2b)2= .如果(x+4)2=x2+kx+16,那么k= .計算:(1)(3m )2 (2)(x21)2(2)(ab)2 (4)( s+ t)2完全平方公式教案9教學(xué)建議(一)教材分析知識結(jié)構(gòu)重點、難點分析重點:真命題的證明步驟與格式.命題的證明步驟與格式是本節(jié)的主要內(nèi)容,是學(xué)習(xí)數(shù)學(xué)必具備的能力,在今后的學(xué)習(xí)中將會有大量的證明問題;另一方面它還體現(xiàn)了數(shù)學(xué)的邏輯性和嚴(yán)謹(jǐn)性.難點:推論證明的思路和方法.因為它體現(xiàn)了學(xué)生的抽象思維能力,由于學(xué)生對邏輯的理解不深刻,往往找不出最優(yōu)的思維切入點,證明的盲目性很大,因此對學(xué)生證明的思路和方法的訓(xùn)練是教學(xué)的難點.(二)教學(xué)建議四個注意(1)注意:①公理是通過長期實踐反復(fù)驗證過的,不需要再進行推理論證而都承認的真命題;②公理可以作為判定其他命題真假的根據(jù).(2)注意:定理都是真命題,但真命題不一定都是定理.一般選擇一些最基本最常用的真命題作為定理,可以以它們?yōu)楦鶕?jù)推證其他命題.這些被選作定理的真命題,在教科書中是用黑體字排印的.(3)注意:在幾何問題的研究上,必須經(jīng)過證明,才能作出真實可靠的判斷.如“兩直線平行,同位角相等”這個命題,如果只采用測量的方法.只能測量有限個兩平行直線的同位角是相等的.但采用推理方法證明兩平行直線的同位角相等,那么就可以確信任意兩平行直線的同位角相等.(4)注意:證明中的每一步推理都要有根據(jù),不能“想當(dāng)然”.①論據(jù)必須是真命題,如:定義、公理、已經(jīng)學(xué)過的定理和巳知條件;②論據(jù)的真實性不能依賴于論證的真實性;③論據(jù)應(yīng)是論題的充足理由.逐步滲透數(shù)學(xué)證明的思想:(1)加強數(shù)學(xué)推理(證明)的語言訓(xùn)練使學(xué)生做到,能用準(zhǔn)確的語言表述學(xué)過的概念和命題,即進行語言準(zhǔn)確性訓(xùn)練;能學(xué)會一些基本的推理論證語言,如“因為……,所以……”句式,“如果……,那么……”句式等等;提高符號語言的識別和表達能力,例如,把要證明的命題結(jié)合圖形,用已知,求證的形式寫出來.(2)提高學(xué)生的“圖形”能力,包括利用大綱允許的工具畫圖(垂線、平行線)的能力和在對要證命題的理解(如分清題設(shè)、結(jié)論)的基礎(chǔ)上,畫出要證明的命題的圖形的能力,后一點尤其重要,一般通過圖形易于弄清命題并找出證明的方法.(3)加強各種推理訓(xùn)練,一般應(yīng)先使學(xué)生從“模仿”教科書的形式開始訓(xùn)練.首先是用自然語言敘述只有一步推理的過程,然后用簡化的“三段論”方法表述出這一過程,再進行有兩步推理的過程的模仿;最后,在學(xué)完“命題、定理、證明”一單元后,總結(jié)證明的一般步驟,并進行多至三、四步的推理.在以上訓(xùn)練中,每一步推理的后面都應(yīng)要求填注推理根據(jù),這既可訓(xùn)練良好的推理習(xí)慣,又有助于掌握學(xué)過的命題.教學(xué)目標(biāo):了解證明的必要性,知道推理要有依據(jù);熟悉綜合法證明的格式,能說出證明的步驟.能用符號語言寫出一個命題的題設(shè)和結(jié)論.通過對真命題的分析,加強推理能力的訓(xùn)練,培養(yǎng)學(xué)生邏輯思維能力.教學(xué)重點:證明的步驟與格式.教學(xué)難點:將文字語言轉(zhuǎn)化為幾何符號語言.教學(xué)過程:一、復(fù)習(xí)提問命題“兩直線平行,內(nèi)錯角相等”的題設(shè)和結(jié)論各是什么?根據(jù)題設(shè),應(yīng)畫出什么樣的圖形?(答:兩條平行線a、b被第三條直線c所截)結(jié)論的內(nèi)容在圖中如何表示?(答:在圖中標(biāo)出一對內(nèi)錯角,并用符號表示)二、例題分析例1 、證明:兩直線平行,內(nèi)錯角相等.已知: a∥b,c是截線.求證:∠1=∠2.分析:要證∠1=∠2,只要證∠3=∠2即可,因為∠3與∠1是對頂角,根據(jù)平行線的性質(zhì),易得出∠3=∠2.證明: ∵a∥b(已知),∴∠3=∠2(兩直線平行,同位角相等).∵∠1=∠3(對頂角相等),∴∠1=∠2(等量代換).例2 、證明:鄰補角的平分線互相垂直.已知:如圖,∠AOB+∠BOC=180176。利用公式進行熟練地計算。(2)已知,求的值。完全平方公式教案7一、學(xué)習(xí)目標(biāo)二、學(xué)習(xí)重點運用完全平方公式進行一些數(shù)的簡便運算三、學(xué)習(xí)難點靈活運用平方差和完全平方公式進行整式的簡便運算四、學(xué)習(xí)設(shè)計(一)預(yù)習(xí)準(zhǔn)備(1)預(yù)習(xí)書p2627(2)思考:如何更簡單迅捷地進行各種乘法公式的運算?[(3)預(yù)習(xí)作業(yè):(1)(2) (3)(4):(1) (2)(二)學(xué)習(xí)過程平方差公式和完全平方公式的逆運用由 反之反之填空:(1)(2)(3)(4)(5)(6)(7)若,則k=(8)若是完全平方式,則k=例1計算:1. 2.現(xiàn)在我們從幾何角度去解釋完全平方公式:從圖(1)中可以看出大正方形的邊長是a+b,它是由兩個小正方形和兩個矩形組成,所以大正方形的面積等于這四個圖形的面積之和.則S= =即:如圖(2)中,大正方形的邊長是a,它的面積是 。已知(a+b)2=24,(a—b)2=20,求:(1)ab的值是多少?(2)a2+b2的值是多少?已知2(x+y)=—6,xy=1,求代數(shù)式(x+2)—(3xy—y)的值。6完全平方公式:一、學(xué)習(xí)目標(biāo)會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算。結(jié)構(gòu)特點:左邊是二項式(兩數(shù)和(差))的平方;右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。三、初識完全平方公式活動內(nèi)容:通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。右邊是兩數(shù)的平方差。在學(xué)習(xí)中使學(xué)生體會學(xué)習(xí)數(shù)學(xué)的樂趣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的信心,感愛數(shù)學(xué)的內(nèi)在美?!次濉怠⑻诫U之旅(1)(3a+2b)2=________________________________(2)(72m) 2 =__________________________________(3)(+2n) 2=_______________________________(4)(3/5a1/2b) 2=________________________________(5)(mn+3) 2=__________________________________(6)() 2=_________________________________(7)(2xy23x2y) 2=_______________________________(8)(2n33m3) 2=________________________________板書設(shè)計完全平方公式兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。⑧ ()2 =_____________.〈四〉、[學(xué)生小結(jié)]你認為完全平方公式在應(yīng)用過程中,需要注意那些問題?(1)公式右邊共有3項。④ (3a2)2 =_______________。[學(xué)生回答]總結(jié)完全平方公式的語言描述:兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(1)原式的特點。(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。教學(xué)目標(biāo)(一)教學(xué)目標(biāo):經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。學(xué)情分析在學(xué)習(xí)本課之前應(yīng)具備的