【總結(jié)】(4).對數(shù)函數(shù)的導數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數(shù)函數(shù)的導數(shù):.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos)(sin1??)((3).三角函數(shù):
2025-01-18 17:16
【總結(jié)】1.3導數(shù)在研究函數(shù)中的應(yīng)用1.3.1函數(shù)的單調(diào)性與導數(shù)本節(jié)重點:利用導數(shù)研究函數(shù)的單調(diào)性.本節(jié)難點:用導數(shù)求函數(shù)單調(diào)區(qū)間的步驟.(5)對數(shù)函數(shù)的導數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(4)指數(shù)函數(shù)的導數(shù):.)()1(xx
2024-10-19 11:54
【總結(jié)】南京市第三十九中學θ第2.1.1節(jié)開頭的第三個問題中,氣溫θ是關(guān)于時間t的函數(shù)4812162024to-2248610xyoyY=2x+1xoY=(x-1)2-112-1yxy=x3oyOxx1y?
2024-11-17 22:49
【總結(jié)】《函數(shù)的單調(diào)性》教學設(shè)計北京景山學校許云堯一、教學目標的確定1使學生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.3通過知識的探究過程培養(yǎng)學生細心觀察、認真分析、嚴謹論證的良好思維習慣;讓學生經(jīng)歷從具體到抽象,從特殊到一般,從感性到理
2025-07-17 20:38
【總結(jié)】觀察下列各個函數(shù)的圖象,并說說它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:1、觀察這三個圖象,你能說出圖象的特征嗎?2、隨x的增大,y的值有什么變化?畫出下列函數(shù)的圖象,觀察其變化規(guī)律:1、從左至右圖象上升還是下降____?2、在區(qū)間________上,隨著x的增大,f(x)的值隨著_
2024-11-24 23:00
【總結(jié)】第一篇:函數(shù)的單調(diào)性 函數(shù)的單調(diào)性說課稿(市級一等獎)函數(shù)單調(diào)性說課稿《函數(shù)的單調(diào)性》說課稿(市級一等獎)旬陽縣神河中學詹進根 我說課的課題是《普通高中課程標準實驗教科書必修1》第二章第三節(jié)——函...
2024-11-04 01:37
【總結(jié)】第二課時函數(shù)單調(diào)性的性質(zhì)單調(diào)性與最大(小)值問題提出1.函數(shù)在區(qū)間D上是增函數(shù)、減函數(shù)的定義是什么?)(xf3.增函數(shù)、減函數(shù)有那些基本性質(zhì)?2.增函數(shù)、減函數(shù)的圖象分別有何特征?知識探究(一)1212()()0fxfxxx???若
2024-08-25 01:33
【總結(jié)】函數(shù)單調(diào)性的應(yīng)用?教學目的?重點難點?教學過程?退出教學目的?使學生通過對知識的運用加深對知識的理解與掌握。?在問題解決的過程中滲透數(shù)形結(jié)合的思想方法和運動、變化的觀點。?引導學生挖掘知識的作用,提高運用知識分析問題和解決問題的能力。?返回重點難點
2024-11-12 01:38
【總結(jié)】導數(shù)與函數(shù)的單調(diào)性(4).對數(shù)函數(shù)的導數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數(shù)函數(shù)的導數(shù):.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos)(sin1??)((3)
2024-11-11 08:49
【總結(jié)】觀察正弦函數(shù)和余弦函數(shù)的圖象xyo1-1-2?-??2?3?4?正弦函數(shù)單調(diào)區(qū)間有單調(diào)區(qū)間的特點1、端點是二分之個2、區(qū)間長度為xyo1-1-2?-??2?3?4?余弦函數(shù)單調(diào)區(qū)間有單調(diào)區(qū)間的特點1、端點是
2024-11-09 06:04
【總結(jié)】函數(shù)的單調(diào)性廈門市啟悟中學徐玉燕2020年10月28日觀察函數(shù)y=2x+1的函數(shù)值隨自變量x變化的規(guī)律?f(x)=2x+1的函數(shù)值隨自變量x的增大而增大觀察函數(shù)y=-2x+1的函數(shù)值隨自變量x變化的規(guī)律?f(x)=-2x+1的函數(shù)值隨自變量x的增大而減小0x
2024-11-06 17:17
【總結(jié)】了解函數(shù)單調(diào)性和導數(shù)的關(guān)系/能利用導數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間/了解函數(shù)在某點取得極值的必要條件和充分條件/會用導數(shù)求函數(shù)的極大值、極小值/會求閉區(qū)間上函數(shù)的最大值、最小值/會利用導數(shù)解決某些實際問題導數(shù)的應(yīng)用1.函數(shù)在某區(qū)間上單調(diào)的充分條件一般地,設(shè)函數(shù)y=f(x)在某個區(qū)間內(nèi)有導數(shù),如果在這個區(qū)間內(nèi)y′
2024-09-29 15:55
【總結(jié)】§函數(shù)的單調(diào)性(2)o一般地,設(shè)函數(shù)的定義域為I:如果對于屬于定義域I內(nèi)某個區(qū)間上的任意兩個自變量的值,。當時,都有那么就說在這個區(qū)間上是增函數(shù)。一般地,設(shè)函數(shù)的定義域
2024-10-19 11:52
【總結(jié)】函數(shù)的單調(diào)性與二次函數(shù)重難點知識歸納(一)函數(shù)的單調(diào)性1、單調(diào)增函數(shù)的定義:在函數(shù)y=f(x)的定義域內(nèi)的一個區(qū)間A上,如果對于任意兩數(shù)x1,x2∈A,當x1x2時,都有f(x1)f(x2),那么,就稱函數(shù)y=f(x)在區(qū)間A上是增加的,有時也稱函數(shù)y=f(x)在區(qū)間A上是遞增的.2、單調(diào)減函數(shù)的定義:在函數(shù)y=f(x)的定義域內(nèi)的一個區(qū)間A上,如果對于任意兩
2025-06-18 20:41
【總結(jié)】1、確定函數(shù)f(x)=x2-4x+3在哪個區(qū)間內(nèi)是增函數(shù)?哪個區(qū)間內(nèi)是減函數(shù)?引例8642-2-4-6-8-10-5510AB:x=0fx??=x2-4?x??+3AB在(-∞,2)上是減函數(shù);在(2,+∞)上是增函數(shù)。2、確定函數(shù)
2024-10-19 11:51