【總結(jié)】Mathwang幾個經(jīng)典不等式的關(guān)系一幾個經(jīng)典不等式(1)均值不等式設(shè)是實數(shù),等號成立.(2)柯西不等式設(shè)是實數(shù),則當(dāng)且僅當(dāng)或存在實數(shù),使得時,等號成立.(3)排序不等式設(shè),為兩個數(shù)組,是的任一排列,則當(dāng)且僅當(dāng)或時,等號成立.(4)切比曉夫不等式對于兩個數(shù)組:,,有當(dāng)且僅當(dāng)或時,等號成立.二相關(guān)證明(1)用排
2025-04-17 08:24
【總結(jié)】柯西不等式?答案:及幾種變式.、b、c、d為實數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實數(shù),則.變式:或或.定理:設(shè),則(當(dāng)且僅當(dāng)時取等號,假設(shè))變式:.定理:設(shè)是兩個向量,則.等號成立?(是零向量,或者共線)練習(xí):已知a、b、c、d為實數(shù),求證.
2025-04-04 05:05
【總結(jié)】基本不等式及應(yīng)用一、考綱要求:.2.會用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號成立的條件≤a0,b0a=b三、常用的幾個重要不等式(1)a2+b2≥2ab(a,b∈R)(2)ab≤()2(a,b∈R)(3)≥()2(a,
2025-04-16 22:38
【總結(jié)】新課標(biāo)數(shù)學(xué)選修4-5柯西不等式教學(xué)題庫大全一、二維形式的柯西不等式二、二維形式的柯西不等式的變式三、二維形式的柯西不等式的向量形式借用一句革命口號說:有條件要用;沒有條件,創(chuàng)造條件也要用。比如說吧,對a^2+b^2+c^2,并不是不等式的形狀,但變成(1/3)*(1^2+1^2+1^2)*(a^2+b^2
2025-03-25 04:42
【總結(jié)】本科畢業(yè)論文(設(shè)計)題目:Jensen不等式的推廣 院(系)專業(yè):數(shù)學(xué)系(數(shù)學(xué)與應(yīng)用數(shù)學(xué))學(xué)生姓名:馮德文學(xué)號:2003701107導(dǎo)師(職稱):楊慧
2025-01-16 06:29
【總結(jié)】柯西不等式練習(xí)題1.(09紹興二模)設(shè)。(1)求的最大值;(2)求的取值范圍。2.(09寧波十校聯(lián)考)已知,且,求的最小值。3.(09溫州二模)已知,且。(1)若,求的值;(2)若恒成立,求正數(shù)的取值范圍。4、(09嘉興二模)設(shè),且。(1)求證:;(2)求的最小
【總結(jié)】柯西不等式的初等證明及變形作者:張黎娜在客觀事物中,不等量關(guān)系是普遍的,等量關(guān)系是相對的,不等式更一般地反映了數(shù)量之間的關(guān)系和規(guī)律,,不等式在中學(xué)數(shù)學(xué)中具有重要地位和廣泛應(yīng)用,,不等式相關(guān)問題也就成了歷年高考數(shù)學(xué)的考查重點,突出考查學(xué)生聯(lián)系與轉(zhuǎn)化,分類討論,數(shù)形結(jié)合等重要的數(shù)學(xué)思想方法和邏輯思維,數(shù)學(xué)應(yīng)用等
2024-09-01 05:32
【總結(jié)】課時作業(yè)(三十九)絕對值不等式及柯西不等式(選修4-5)一、選擇題1.“|x-1|<2成立”是“x(x-3)<0成立”的( )A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件答案:B解析:|x-1|<2?-1<x<3,x(x-3)<0?0<x<3.則(0,3)(-1,3).故應(yīng)選B.2.設(shè)a,b為滿足ab<0的實
2024-08-14 15:29
【總結(jié)】分類號(宋體小三加黑)論文選題類型UDC編號本科畢業(yè)論文(設(shè)計)(黑體小初)(宋體小一加黑)題目(宋體
2024-08-29 13:03
2024-08-26 12:24
【總結(jié)】分類號(宋體小三加黑)論文選題類型UDC編號本科畢業(yè)論文(設(shè)計)(黑體小初)(宋體小一加黑)題目(宋體小二加黑)
2025-06-23 14:37
【總結(jié)】一般形式介紹舉例分析復(fù)習(xí)練習(xí)本課小結(jié)作業(yè):課本41P第1、2、3題一般形式的柯西不等式課堂練習(xí)上一節(jié)課,我們認(rèn)識了二維形式的柯西不等式,運用該不等式可以求一些最值及證明一些不等式.下面我們來做幾個鞏固練習(xí):1.已知,ab為任意實數(shù),求證:4422332(
2025-08-01 17:29
【總結(jié)】第三講柯西不等式與排序不等式一二維形式的柯西不等式若a,b,c,d都是實數(shù),則(a2+b2)(c2+d2)≥(ac+bd)2當(dāng)且僅當(dāng)ad=bc時,等號成立.定理1(二維形式的柯西不等式):你能證明嗎?推論22222222||abcdacbdabc
2025-07-23 10:08
【總結(jié)】有些不等式不僅形式優(yōu)美而且具有重要的應(yīng)用價值,人們稱它們?yōu)榻?jīng)典不等式.如均值不等式:1212(,1,2,,)nnniaaaaaaaRinn??????≥.本節(jié),我們來學(xué)習(xí)數(shù)學(xué)上兩個有名的經(jīng)典不等式:柯西不等式與排序不等式,知道它的意義、背景、證明方法及其
2025-07-26 13:38
【總結(jié)】江西師范大學(xué)09屆學(xué)士學(xué)位畢業(yè)論文不等式的證明方法畢業(yè)論文目錄1引言 32不等式證明的基本方法 4比較法 4作差比較法 4作商比較法 5分析法 5綜合法[2] 6反證法 6換元法 8三角代換法 8增量換元法 9放縮法 10“添舍”放縮 10利用基本不等式 10分式放縮 12迭合法 13數(shù)
2025-06-24 19:24